DEPARTMENT OF LIFE SCIENCES

The college was established in 1969. According to the needs of residents of the local area, there was a dire need of introducing B.Sc medical and B.Sc non-medical. Keeping in view this need, BSc-non-medical and BSc medical were started in the year 1998 and 2000 respectively. Initially, Zoology and Botany were two separate departments. Both BSc medical and B.Sc non-medical were introduced during the tenure of Principal Jaswant Singh Sandhu. Thereafter, permanent faculty members were appointed so that a strong foundation be laid for Basic Science in this economically backward area. The subject of Home Science was started as an elective subject in the year 2008. In the year 2010, a new subject Environment Conservation was introduced under Innovative Scheme of UGC with UGC grant of 36 lacs rupees. The department of Zoology, Botany, Home Science and Environment Conservation are now merged and the department of Life Sciences has been established in the year 2021.

There are individual labs for Zoology, Botany, Environment Conservation and Home Science. It also has a Biodiversity Museum, Root Zone technology unit and Vermi-compost unit. The department organized 3-days UGC sponsored National Conference on 'Climate Change its Impact and Adaptation Practices' in the year 14-16 February 2012 and one day seminar CDC Panjab University Chandigarh sponsored National Seminar on 'Role of Individual and Scientists Towards Conservation of Biodiversity' on February 17, 2017.

VISION

The holistic development of the students and make them able to contribute effectively for their welfare and society in this dynamic era through sound theoretical and practical academic grounding interface

MISSION

To impart intensive and extensive knowledge through the provision of:

- Educate students to become responsible members of society
- Develop scientific temper through varied field exposure
- Inculcate values of scientific enquiry and framing solutions based on local resources

- Reinvent thought processes of young minds through awareness, exposure, and experimentation
- Hands on training through a number of co-curricular activities pertaining to the environment, ecosystem and ecological support mechanisms
- Building fundamental research and technology based spirit of innovation and entrepreneurships
- Promoting an enabling environment

OBJECTIVES

- Ensuring a futuristic educational exchange among students on, Cell biology, Classifications of Flora and Fauna ,Environmental biology, Animal Physiology, Biotechnology, Food and Nutrition etc. This will be ensured through:
- Emphasizing biological literacy through quality education
- Promoting the role of biological solutions through agriculture and allied fields
- Examining the viability of lab and field based studies in the local socio economic environment
- Paving the way for training in skill areas like aquaculture, api-culture, pisci-culture, horticulture, hydroponics, floriculture and other allied sectors
- Promoting industrial and NGO partnerships for student advancement
- Enabling the students to prepare themselves for higher education leading to M.Sc./MB.A degree courses
- Competency to qualify competitive examinations conducted by PPSC/UPSC/SSC

Programme run by department:

1. B.Sc. Medical (General) (Programme code: BSCM)

B.Sc. Medical (General)

PROGRAMME LEARNING OUTCOMES OF B.Sc. (General)

Graduate Attributes

On successful completion of B.Sc. programme the students will be able to develop following attributes, qualities and skills:

PO 1	Disciplinary Knowledge	Capable of demonstrating comprehensive knowledge and understanding of major concepts, theoretical principles and experimental findings in science and its different subfields, and other related fields of study, including broader interdisciplinary subfields.			
PO 2	Communicat ion Skills	Course of English in B.Sc. enables them to communicate clearly and convincingly about science and technology ideas, practice and future contributions to expert and non-expert audiences through seminars, open discussion, language learning.			
PO 3	Critical Thinking	 Ability to employ critical thinking is enhanced by Organizing guest lectures, debates and declamation on hot topics/current subjects. Presenting logic and reasoning for all forms of topics. Question to be paused through studying different courses domestically and international. 			
PO 4	Problem Solving	The practical and theoretical approaches in basic sciences develop the conceptual, analytical, quantitative and technical skills in the students to solve academic and real life problems.			
PO 5	Sense of Inquiry	Experiment based curriculum builds the capability for asking relevant/appropriate questions relating to issues and problems in the field of Science and planning, executing and reporting the results of an investigation.			
PO 6	Team player/ worker	 Students of B.Sc. are capable of Working effectively in diverse teams in both classroom, laboratory and in industry and field-based situations. Performing in groups to meet a shared goal with people whose disciplinary and cultural background differs from their own. Organize field trips, field surveys and photo documentation projects. Consistently hold science exhibitions, poster contests, short trips to help in shaping personality. 			
PO 7	Skilled Project	Undertaking Assignments and projects of various disciplines of Science			

	Manager	make them capable of identifying/mobilizing appropriate resources required for a project, and managing a project through to completion, while observing responsible and ethical scientific conduct; and safety-regulations and practices.			
PO 8	Digitally Literate	Students of B.Sc. Capable of			
		 Using computers for computation and appropriate software for analysis of data Employing modern library search tools to locate, retrieve and evaluate subject-related information. Various class seminars are arranged for the students to make their ppt. by using e-resources/e-books and different search engines 			
PO 9	Ethical Awareness	Course Framework of B.Sc. make students capable of			
		 Demonstrating ability to think and analyze rationally with modern and scientific outlook and identify ethical issues Avoiding unethical behavior such as fabrication, falsification or misrepresentation of data or committing plagiarism, and appreciating environmental and sustainability issues. 			
PO 10	National and International Perspective	The Multidisciplinary Program enables students to evaluate the role of science, technology, and engineering in addressing current issues facing local and global communities. For example climate change, health and disease, food security, sustainable energy use etc.			
PO 11	Lifelong Learners	Make students Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and reskilling in all areas of science. It promotes interactions with corporate, NGOs and government as well as other agencies.			
PO 12	Leadership Readiness/ Qualities	 B.Sc. program enhanced the theoretical and experimental skills necessary to analyze and solve a range of advances problems, providing an excellent foundation for leadership Through extra and co-curricular activities (NSS, NCC, Youth Festivals). To interact with different individuals in society and work for welfare of community. 			
PO 13	Multicultural Competence	 In youth fest and heritage festival encouraging performance in various items. Visual and graphic presentation of Indian culture and ethnicities. Gurpurab celebrations to showcase rich cultural heritage of Punjab. Encouraging the embellishment of various cultures of the state 			

		through its traditional profile presentation in text, oral and other performance initiatives.
PO 14	Self -Directing Learning	Enable them to recognize the need for information, effectively search for, evaluate, manage and apply that information in support of scientific investigation.
PO 15	Scientific reasoning	 Introduction of students to labs and lab equipment materials and safe-guard. Perform experiments and activities in singles and in groups. Compare and coordinate team spirit in discussant mode.

Program Specific Outcomes (PSOs)

PSO1	B.Sc. Medical students are able to acquire knowledge regarding Botany, Zoology, Chemistry,
	Biotechnology and Entomology.
PSO2	Medical Students will be able to define and explain major concepts in the Biological and chemical sciences.
PSO3	They are able to correctly use different instrumentation and proper laboratory techniques in different subjects.
PSO4	Students will be able to communicate knowledge in oral and written form.
PSO5	Students will be able to recognize the relationship between structure and function at all levels: molecular, cellular and organisms.
PSO6	They can go for Indian Forest Service, IAS and other competitive examinations.
PSO7	They can opt for higher studies in Botany, Zoology, Chemistry, Biotechnology, Biochemistry, MolecularBiology and Forensic Science etc.

Course Outcomes COs) of B.Sc. Medical

Semester	University Code	College Code	Course Outcomes On completion of the course, students will be able to know the scope and importance of the discipline and its objectives	
Sem. I	PBC	PBC101	CO1	Give an introductory knowledge of PBI language.
			CO2	Examine the various forms of modern poetry
			CO3 To understand the definition and nature of easy and make	
			students capable of writing easily.	
			CO4 To develop the skill of Percy writing.	
			CO5	To make student able to understand the grammar and its
				importance in sentence language.

			CO6	To get practical knowledge of various
Sem. I	НСР	HCP101	CO1	Describe extent, town planning and socio -economic life Punjab during Harappan Civilization.
			CO2	Analyze life of people of Punjab in Vedic and Post Vedic Age.
			CO3	Describe Society and Culture of Punjab during Maurya's and Guptas.
			CO4	Explain the origin and features of Bhakti and Sufi movement in Punjab
			CO5	Describe the teachings of Sikh gurus and development of Sikh Religion.
			CO6	Evaluate the changes in society and culture of Punjab and during rule of Maharaja Ranjit Singh.
Sem. I	СНМ	CHM101A 1	CO1	Understand the essential facts relating inorganic chemistry concepts.
			CO2	Comprehension of Atomic Structure, Periodic properties of elements.
			CO3	Description of Chemistry of Noble Gases.
			CO4	Knowledge about s-Block Elements.
			CO 5	Explanation of Chemical Bonding (V.B.T, VSEPR, hybridization MOT).
			CO 6	To determine the percentage ionic character from dipole moment and electro negativity difference.
Sem. I	СНМ	CHM101A	CO1	Understand the structure and bonding of organic compounds
		2	CO2	Comprehension of mechanisms of different organic reactions
			CO3	Description of alkanes and cycloalkanes and including their
				synthesis and chemical reactions
			CO4	Knowledge about optical isomerism in organic compounds.
			CO5	Explanation of geometrical isomerism and
			CO6	Conformational isomerism in organic compounds.
Sem. I	СНМ	CHM101 A3	CO1	Acquire the knowledge of mathematical concepts and its application in evaluation of analytical data.
			CO2	Explanation of gaseous state and deviation in their behavior from ideal gases behavior
			CO3	Knowledge about Maxwell distribution of molecular velocity, collision number and mean free path.
			CO4	Description of reaction, rate of reaction, kinetics and their mechanism
			CO5	Understand the effect of temperature on rate of reaction, collision theory, catalysis and radioactive decay
			CO6	To understand the Michaelis Menten's equation for enzyme catalysis and its mechanism.
Sem. I	ВОТ	BOT101	CO1	To Understand the diversity in lower plants with their structural
June I		A		differentiation and life cycle

			CO2	To learn The diversity in various life forms of the plant kingdom
			CO3	To extend a systematic study of algae and fungi.
			CO4	To infer structural differentiation but also provide an insight
			004	about the heterotrophic and autotrophic modes of nutrition in the
				plant kingdom.
			CO5	To extrapolate the basis of any advance study in Botany.
			CO5	To describe about Lichens.
Sem. I	ВОТ	BOT101B	C00	Knowledge about basic structural unit of life i.e. cell and its
Sem. 1	DOT	DOTIOID	COI	organelles.
			CO2	To extrapolate the structural and cytological basis of functional
				differentiation in plants.
			CO3	To extend the study of prokaryotic and eukaryotic diversity of
				life forms.
			CO4	To demonstrate cellular, molecular and biochemical basis of
				cytological and functional differentiation.
			CO5	To understand Gene regulation in prokaryotes.
			CO6	To learn DNA structure.
Sem. I	ZOO	ZOO101A	CO1	Understand the lower non chordates with their structure and life
				cycle.
			CO2	Identify and Classify the different non chordates.
			CO3	Explain the prokaryotic and eukaryotic diversity of life forms.
			CO4	To gain knowledge about basic structural unit of life that is cell
				and its organelles.
			CO5	Demonstrate the principal and application of microscopy and
				fixative techniques
			CO6	Culture the microorganism like Amoeba, Paramecium.
Sem. I	ZOO	ZOO101	CO1	Descriptive knowledge of medically important non chordates,
	200	B		their life cycle and preventive measures
			CO2	Classify the non-chordates up to orders
			CO3	To understand the working of nucleus this is said to be brain of
				cell.
			CO4	To gain knowledge about basic structure of cell organelles.
			CO5	Differentiate between normal and cancer cell and its type.
			CO6	Recognize the cellular and humoral immunity
Sem. II	PBC	PBC201	CO1	To get basic information of Punjabi language
			CO2	Provide knowledge of Punjabi short story and make student
				familiar with it
			CO3	Also make student able to write any kind of notice
			CO4	To make student to understand the Punjabi idioms its importance
				and benefits
			CO 5	To provide practical knowledge of Punjabi language and
				vocabulary
			CO 6	Theoretical and Practical knowledge of linguistics

Sem. II	НСР	HCP201	C01	Describe the establishment of colonial rule in Punjab.
			CO2	Analyze the growth of Western Education and Agrarian
				Policy of Britishers in Punjab.
			CO3	Describe the Social -Religious movement in Punjab.
			CO4	Evaluate the development of Press and literature in Punjab.
			CO 5	Analyze the role of people of Punjab in Freedom Struggle.
			CO 6	Evaluate the social issues in the post-Independence
C II	CIIM		CO1	Punjab.
Sem. II	CHM	CHM201A 1	CO1 CO2	Appraisal of p-block elements and chemical bonding. Understanding of close packing in ionic solids and radius ratio
		1	02	rule.
			CO3	Comprehension of lattice energy and Born Haber cycle.
			CO4	Knowledge about polarising power and polarisability using fajan's rule.
			CO5	Descriptions of hydrides ,oxides ,oxyacids of p-block elements.
			CO6	To know about the basic properties of halogens, interhalogens
				and polyhalides.
Sem. II	СНМ	CHM201A	CO1	Comprehension of alkenes and cycloalkanes including their
		2		synthesis and chemical reactions
			CO2	Knowledge about dienes and alkynes incorporating their
				methods of formation, structures and chemical reactions
			CO3	Understanding the arenes and aromaticity in organic compounds
			CO4	Descriptions of mechanisms of aromatic electrophilic substitutions reactions
			CO5	Appraisal of methods of formation and chemical reaction of alkyl halides and aryl halides.
			CO6	To understand the substitution at allylic and vinylic position of alkenes.
Sem. II	СНМ	CHM201	CO1	Appraisal of thermodynamics, first law of thermodynamics
		A3	CO2	Understanding the expansion of ideal gases under isothermal and
				adiabatic conditions
			CO3	Descriptions of standard state and enthalpy of formation using hess's law
			CO4	Knowledge of colloidal state, its classifications ,sols ,emulsions and gels
			CO5	Comprehension of ideal and non-ideal solutions and their colligative properties.
			CO6	To learn how to determine various colligative properties.
Sem. II	ВОТ	BOT201	CO1	To Understand how different life forms have evolved from
	201	A	_	simpler to complex ones.
			CO2	To infer developmental stages from lower to higher plants.
			CO3	To identify and explain the life cycle of Bryophytes (the
				amphibians of plant kingdom).

			CO4	To recognize Pteridophytes -the first vascular land plants and
				life stages.
			CO5	To analyze a broad perspective of evolutionary trends in the
				plant kingdom.
			CO6	To extrapolate the difference between Bryophytes and
				Pteridophytes.
Sem. II	ВОТ	BOT201B	CO1	To learn the genetic basis of evolutionary trends in plants.
			CO2	To Understand the role of genetics in plant differentiation.
			CO3	To analyze various aspects of hereditary trends observed in
				successive generations
			CO4	To extrapolate the genomic basis of evolutionary trends in plants
				coupled with the study of variations in life forms.
			CO5	To describe chromosomal theory of inheritance.
			CO6	To infer Mutation and its types.
Sem. II	ZOO	ZOO201A	CO1	Classify the Non-Chordates from Platyhelminthes to Annelida.
			CO2	Describe the social insects and their importance.
			CO3	Differentiate between the life cycle of <i>Anopheles</i> and <i>Culex</i> .
			CO4	Have insight the type specimen i.e. Periplaneata and Palaemon
			CO5	Gain the conceptual knowledge of ecology ecosystem and
				ecological factors
			CO6	To analyze the role of environment in morphological,
				physiological and behavioral adaptation in animals.
Sem. II	ZOO	ZOO201	CO1	Understand the basic knowledge of non-Chordates from Phylum
		B		Mollusca to Hemichordate
			CO2	Classify the Non Chordates up to Orders
			CO3	To study the external morphology and anatomy of the non-
				chordates
			CO4	Utilize the Renewable and non-renewable resources
			CO 5	Understand the values of biotic communities, natural resources,
				environment degradation and its conservation
			CO 6	Summarize the IUCN Red list, conservation projects, Wildlife
				(Protection) Act, 1972
Sem. III	ENG	ENG301	CO1	To write an effective business document (such as notice, memo,
				advertisement etc.) which enable them to think analytically.
			CO2	To acquire extensive knowledge of English as a language in its
				various textual forms and to become thoughtful, imaginative and
				effective communicators in a diverse and changing society.
			CO3	To enhance their writing skill by building strong vocabulary.
			CO4	To empower an average student in such a way that English
				learning becomes a Pleasurable endeavor.
			CO5	To acquire knowledge about various literary aspects through the
				text which capacitates them to enrich their literary and cultural
				values.

			CO6	To critically appreciate literary texts
Sem. III	CHM	CHM301A	CO1	Justification regarding bonding, magnetic as well as spectral
		1		properties of transition metal complexes.
			CO2	To understand the Chemistry of Coordination Compounds and
				their geometries.
			CO3	Structures of Coordination compounds containing central metal
				atom and ligands.
			CO4	Study of transition series(First, second and third transition
				series)
			CO5	Demonstration regarding lanthanides and actinide contractions.
			CO6	To understand the use of co-ordination compounds.
Sem. III	CHM	CHM301A	CO1	Inculcate the knowledge of alcohols i.e. mono, di, tri hydric
		2		alcohols
			CO2	Understand the chemical reactions of vicinal glycols and
				glycerol
			CO3	Appraisal of phenols and their properties
			CO4	Comprehension of the aldehyde and ketones
			CO5	Discuss the formation of aldehydes and ketones and carboxylic
				acids.
			CO6	To understand the mechanism of nucleophillic addition to
				carbonyl compound.
Sem. III	CHM	CHM301	CO1	Understand the intermolecular forces in liquids, liquid crystals
		A3		and their classifications.
			CO2	Discuss the chemical equilibrium , law of mass action and
				relationship and types of equilibrium constant
			CO3	Comprehension of the second law of thermodynamics , carnot
				cycle and its efficency.
			CO4	Appraisal of entropy change in ideal gases and its mixing.
			CO5	Inculcate the knowledge of third law of thermodynamics; Nernst
				heat theorem.
			CO6	To understand the classification and structure of liquid crystals.
Sem. III	BOT	BOT301	CO1	To learn Fossils, their types and formation .
		Α	CO2	To discuss the geological time scale
			CO3	To describe general features of Fossil seed plants.
			CO4	To illustrate the evolved group of plants with naked seed
				"GYMNOSPERMS".
			CO5	To explain structure, reproduction and life cycle of non
				flowering plants.
			CO6	To extrapolate the general characteristics of Gymnosperms.
Sem. III	BOT	BOT301B	CO1	Basic body plan of Flowering plants.
			CO2	To describe modification of different parts of plants.
			CO3	To demonstrate vegetative and reproductive morphology of
				plants bearing the enclosed seeds.

T			CO4	To analyze Diversity in plant form in annuals, biennials and
			0.04	perennials.
			CO 5	To explain shoot, root system, leaf and flowers of seed
			05	
			<u> </u>	producing plants.
~	700	7003014	CO 6	To understand Tissue system in plants.
Sem. III	ZOO	ZOO301A	CO1	To explain the origin Parental Care and Migration in Chordates.
			CO2	Classify and Identify the chordates From Protochordates to
				Amphibia.
			CO3	Study the basic structure of different type specimens.
			CO4	To understand how different life forms have evolved from
				simpler to complex ones
			CO5	Able to know about theories of origin of life and evidences of
				evolution.
			CO6	To explore the fins and scales in fishes and their importance
Sem. III	ZOO	ZOO301	CO1	Gain the knowledge of structure and classification of bio-
		B		molecules.
			CO2	Understand the nature, mode of action of enzymes and co-
				enzymes.
			CO3	To study the regulation of digestive process, absorption,
				enzymatic and symbiotic digestion.
			CO4	Gain the knowledge of transport of respiratory gases and oxygen
				dissociation curve of haemoglobin.
			CO5	To analyze the composition, function, and blood grouping
				including Rh factor of blood.
			CO6	Demonstrate the knowledge of working of heart, ECG, blood
				pressure and cardiac output
Sem. IV	CHM	CHM401A	CO1	Understand the chemistry of Lanthanides and Actinides
		1		elements; their properties and separation.
			CO2	Inculcate the concept of acids and bases.
			CO3	Comprehension of theories to understand the classification of
				acids-bases.
			CO4	Appraisal of oxidation and reduction. to use redox potential data.
			CO5	Describe non-aqueous solvents; their types and properties;
				principles involved in the extraction of elements.
			CO6	To understand the physical properties of different solvents.
Sem. IV	CHM	CHM401A	CO1	Acquire the knowledge of carboxylic acids, halo acids, malic
		2		acids ,tartaric acid and citric acids.
I		_	l	
			CO2	Classification of the Organic Compounds of Nitrogen.
			CO2 CO3	
				Classification of the Organic Compounds of Nitrogen. Detection of elements and functional groups in simple organic compounds.
				Detection of elements and functional groups in simple organic compounds.
			CO3	Detection of elements and functional groups in simple organic

				epoxide.
Sem. IV	CHM	CHM401	CO1	Learn the necessary chemical knowledge about
		A3		electrochemistry.
			CO2	Appraisal of electrical transport of electrolytes, conductance
				with dilution.
			CO3	Understanding of Nernst distribution law and thermodynamic
				derivation.
			CO4	Description of type of reversible electrode, E.M.F. of cell and
				electrochemical series.
			CO5	Describe non-aqueous solvents; their types and properties;
				principles involved in the extraction of elements.
			CO6	To know about applications of concentration.
Sem. IV	ВОТ	BOT401	CO1	To Understand the highly advanced and evolved group of plants
		Α		"ANGIOSPERMS" with their structural differentiation and
				reproduction.
			CO2	To illustrate gradual transition from seedless plants to seed
				plants would make students familiar with the origin of structural
				and functional complexity in the plant kingdom.
			CO3	To recognize the importance of taxonomy and species concepts.
			CO4	To Define terminology pertaining to floral description
			CO5	To describe general account and diagnostic features of different
				families of flowering plants.
			CO6	To infer General characteristics of Flowering Plants.
Sem. IV	BOT	BOT401B	CO1	To understand structure development and reproduction in
				flowering plants – the most fascinating group of plants on earth
			CO2	To analyze internal structure of various plant parts, their growth
				patterns and abnormalities in structural development.
			CO3	To describe the vast range of variation found in flowering plants
				for the foundation of applied branches like horticulture,
				floriculture, olericulture and arboriculture.
			CO4	To learn Significance of seed and seed formation.
			CO5	To compute Contrivances for self and cross pollination.
			CO6	To extrapolate types of fruits.
Sem. IV	ZOO	ZOO401A	CO1	Classify the chordates from Reptiles to Mammals.
			CO2	Identify poisonous and nonpoisonous snakes.
			CO3	To explain flight adaptations of birds.
			CO4	To gain knowledge of type specimens
			CO5	Understand the biological species concept and Micro, Macro and
				human evolution.
			CO6	Determine the fossil and Dating of fossils
Sem. IV	ZOO	ZOO401B	CO1	Analyze the process of Lipid metabolism by B-oxidation of fatty
				acids and interaction of carbohydrates and lipids etc.
			CO2	Gain the knowledge about metabolism of amino acids and

				ornithine cycle.
			CO3	Study the structure of nephron, osmoregulation and counter
				current mechanism of urine.
			CO4	Understand the chemical and physiological basis of skeletal
				muscle contraction.
			CO5	Gain the knowledge of neuron, origin and propagation of
				impulse along the axon.
			CO6	Analyze the role hormones and its functions of endocrine
				system.
Sem. V	СНМ	CHM501A	CO1	Comprehension of crystal field theory and valence bond theory
		1		of metal ligand bonding in transition metal complexes.
			CO2	Description of thermodynamic and kinetic aspects of Metal
				Complexes.
			CO3	Knowledge about synthesis, structure, properties and
				applications of organometallic compounds of Li,Al,Hg,Sn and
				Ti.
			CO4	Analysis of metal-ethylenic complexes, homogeneous
				hydrogenation and mononuclear carbonyls.
			CO5	Explanation of metalloporphyrins, nitrogen fixation and
				biological role of alkali and alkaline earth metal ions.
			CO6	To appraise the biological importance of alkali and alkaline earth
				metals.
Sem. V	СНМ	CHM501A	CO1	Appraisal of the use of spectroscopic techniques to analyze the
		2		synthesised organic compounds.
			CO2	Apply the concept of absorption laws to compute molar
				absorptivity, to differentiate between chromophores and
				auxochrome.
			CO3	Demonstration of infrared spectroscopy to detect the present
				functional groups in the given organic compounds.
			CO4	Apply the concept of nuclear magnetic resonance (NMR)
				spectroscopy to find the structure of the given organic
				compounds.
			CO5	Count the biological importance of carbohydrates.
			CO6	To interpret the NMR spectrum of simple organic compounds.
Sem. V	CHM	CHM501	CO1	Description of elementary quantum mechanics, black body
		A3		radiation, Schrodinger wave equation for H-atom.
			CO2	Apply the Schrodinger wave equation to find the wavefunctions
				of the given system to account for its stability.
			CO3	Demonstrate the use of quantum mechanics to calculate the
				hybridisation of atomic orbitals.
			CO4	Inculcate the knowledge of photochemical reactions and the
				laws governing the photochemical reactions.
			CO5	Description of fluorescence, phosphorscence and quantum yield

				of photochemical reactions.
			CO6	To understand the photochemistry of carbonyl compounds and
				alkenes.
Sem. V	ВОТ	BOT501	CO1	To Understand the concept of function and metabolism of plants
		Α	CO2	To Acquire the knowledge about Structural Diversity of various
				plant forms with plant differentiation.
			CO3	To learn biological aspects like nitrogen fixation and mineral
				nutrition
			CO4	To analyze Plant water relationship.
			CO5	To Illustrate structure and classification of proteins and
				enzymes.
			CO6	To infer Ascent of SAP.
Sem. V	BOT	BOT501B	CO1	To describe Ecology and the role of the Environment in causing
				structural and functional variation in plants.
			CO2	To understand the present day problems of varied nature like
				pollution.
			CO3	To illustrate Global Warming and conservation of natural
				resources
			CO4	To learn Climatic, edaphic, topographic and biotic factors
				affecting growth and distribution of plants.
			CO5	To Define Ecosystem.
			CO6	To extrapolate adaptations in plants and Ecological Succession
Sem. V	ZOO	ZOO501A	CO1	Gain the knowledge of gametogenesis, vitellogenesis and role of
				subtesticular cells.
			CO2	Understand the process of fertilization and parthenogenesis
			CO3	To study types of cleavage, blastula and types of blastula.
			CO4	To analyze cell interaction, basic concept of organizers and
				inducers and their role.
			CO5	Gain conceptual knowledge of development up to three germs
				layers in <i>Herdmania</i> , frog chick etc.
			CO6	Gain knowledge of foetal membranes, mammalian placenta,
				their formation and functions.
Sem. V	ZOO	ZOO501 B	CO1	To understand the concept of Entomology
			CO2	To acquire the knowledge about different types of development
				stages in insects.
			CO3	Comprehensive knowledge of Economic Entomology and Pest
				Management
			CO4	Identify and classify pest the of crops, vegetables Stored grains
				and medical important insects.
			CO5	Develop skill in Agriculture Practices like pest controls and
				nature of damage.
Sem. VI	CHM	CHM601A	CO1	Inculcate the knowledge of Silicones and Phosphazenes.

		1	CO2	Comprehension of HSAB concept ,symbiosis and theoretical basis of hardness and softness.
			CO3	Knowledge about types and selection rules for electronic transitions.
			CO4	Analysis of Orgel- energy level diagram for d1 and d9 states.
			CO5	Description of magnetic properties of transition metal
				complexes.
			CO6	To understand symbiosis and its theoretical basis.
Sem. VI	CHM	CHM601A	CO1	Familiarized with Amino Acids, Peptides, Proteins and Nucleic
		2		Acids.
			CO2	Description of synthetic polymer; their types, synthesis and uses.
			CO3	Inculcate the knowledge of organic synthesis via enolates.
			CO4	Description of organometallic compounds; its types and their synthesis.
			CO5	To understand the doubal helical structure of DNA.
			CO6	To study preparation and reactions of amino acids.
Sem. VI	CHM	CHM601	CO1	Understanding of space lattice, unit cell, miller indices.
		A3	CO2	Appraisal of Bragg's equation and X-ray diffraction.
			CO3	Knowledge about electromagnetic radiation and different
				spectrometers.
			CO4	Description of rigid rotor and non-rigid rotor.
			CO5	Inculcate the concepts vibrational and electronic spectrum.
			CO6	To interpret different types of physical spectra.
Sem. VI	BOT	BOT601	CO1	To Understand plant development, differentiation and regulatory
		Α		mechanism.
			CO2	To learn basics in tissue culture
			CO3	To recognize Photosynthesis its Significance, historical aspect
				and action spectra.
			CO4	To illustrate the Respiration process in plants.
			CO5	To explain Growth and Development.
			CO6	To extrapolate Seed Dormancy and photoperiodism.
Sem. VI	ВОТ	BOT601B	CO1	To recall Plant wealth, economic importance.
			CO2	To Illustrate cultivation practices of plants.
			CO3	To describe forest Conservation.
			CO4	To apply the basis of ecology and economic botany to venture into fields like Environmental Biology.
			CO5	Understanding Wood seasoning.
			CO6	To Learn Economic Importance of medicinal plants
Sem. VI	ZOO	ZOO601A	CO1	Summarize the Mendelian and Non-Mendelian ratios (Non
				allelic gene interaction).
			CO2	To analyze the study of gene modifications due to incomplete
				dominance and Pleiotropic genes.
			CO3	Gain the knowledge of inheritance of quantitative traits (skin

				colour in man).
			CO4	Understand the process of linkage, crossing over, gene and
				genetic code.
			CO5	Analyze the process of mutation and inborn errors of metabolism
				and regulation of gene expression.
			CO6	Gain the knowledge Population and Applied genetics; gene
				cloning, DNA fingerprinting
Sem. VI	ZOO	ZOO601	CO1	Acquire the knowledge of Sericulture, Apiculture, Lac Culture.
	200	В	CO2	Understand Recent methods of Pest Control: chemical and
				biological Control.
			CO3	Framework of IPM program and perspectives in IPM.
			CO4	Understand the banned pesticides and also their ill effects on
				flora, fauna and environment.
			CO5	Gain practical knowledge to Design Project Reports.
			CO6	Develop Skill for Entrepreneurship

Ν	Aapping	g of (Cours	se Ou	tcon	nes (O	COs)	with	n Pro	gran	ıme	Outc	omes	s(PO	s)	
					P	rogra	mme	Outc	ome							
College code	Course Out- comes	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14	PO 15
	1					S	emest	er I								<u> </u>
PBC101	CO1	1	2	3	2	1	3	2	Х	3	2	1	2	3	2	2
	CO2	2	Х	2	1	2	2	1	1	1	1	X	1	1	1	1
	CO3	Х	2	1	1	1	1	Х	2	2	3	2	3	2	3	3
	CO4	3	1	Х	3	2	2	2	2	Х	2	3	Х	1	1	1
	CO5	1	1	2	2	X	1	2	3	2	Х	1	2	1	1	1
	CO6	1	3	1	1	3	Х	1	1	2	1	2	1	2	Х	X
HCP101	CO1	Х	2	1	Х	2	Х	Х	Х	Х	1	2	1	2	Х	1
	CO2	Х	2	1	Х	2	Х	X	Х	X	1	2	1	2	Х	1
	CO3	Х	2	1	1	2	Х	Х	Х	Х	1	2	1	2	Х	1
	CO4	Х	2	1	1	2	Х	Х	Х	3	1	2	1	2	Х	2
	CO5	Х	2	1	Х	2	Х	Х	Х	3	1	2	1	2	Х	2

	CO6	Х	2	1	Х	2	Х	Х	X	X	1	2	1	2	X	1
CHM101		2	2	1	1	1	1	1	1	1	1	1	1	X	1	1
A1	CO1			1	1				1	1						1
	CO2	2	2	1	1	1	1	1	1	1	1	1	1	Х	1	1
	CO3	2	2	1	1	1	1	1	1	1	1	1	1	Х	1	1
	CO4	2	2	1	1	1	1	1	1	1	1	1	1	Х	1	1
	CO5	2	2	1	1	1	1	1	1	1	1	1	1	Х	1	1
	CO6	2	2	1	1	1	1	1	1	1	1	1	1	Х	1	1
CHM101	CO1	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
A2	CO2	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO3	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO4	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO5	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO6	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
CHM1 01A3	CO1	2	2	Х	2	1	1	2	1	2	1	Х	Х	Х	1	1
UIAS	CO2	1	2	Х	1	1	1	2	1	1	2	Х	Х	Х	2	1
	CO3	2	2	Х	1	1	1	2	1	1	1	Х	Х	Х	1	1
	CO4	1	2	Х	1	1	1	2	1	1	1	Х	Х	Х	1	1
	CO5	2	2	Х	1	1	1	2	1	1	1	Х	Х	Х	1	1
	CO6	2	2	Х	1	1	1	2	1	1	1	Х	Х	Х	1	1
BOT10	CO1	3	1	3	3	3	2	3	2	3	1	3	Х	Х	3	3
1A	CO2	3	1	2	2	3	3	2	2	2	Х	2	Х	Х	2	3
	CO3	3	1	2	3	2	3	2	2	1	Х	2	Х	Х	2	3
	CO4	3	1	3	2	3	2	2	2	2	Х	2	Х	Х	1	3
	CO5	3	1	2	2	2	2	1	2	2	Х	2	Х	Х	2	3
	CO6	3	1	2	2	2	2	1	2	2	Х	2	X	Х	2	3
BOT101B	CO1	3	1	3	3	3	2	3	2	3	1	3	X	Х	2	3
	CO2	3	1	2	2	2	3	2	2	2	Х	2	X	X	2	3

		· · · · ·					1	1	1	r	1		1	1	1	1
	CO3	3	1	3	3	3	3	2	2	1	1	2	Х	Х	3	3
	CO4	3	1	2	2	3	2	2	2	2	Х	2	Х	Х	1	3
	CO5	3	1	2	2	1	2	1	2	2	Х	2	Х	Х	2	3
	CO6	3	1	2	2	1	2	1	2	2	Х	2	Х	Х	2	3
ZOO101A	CO1	2	1	2	1	2	1	2	1	2	1	2	Х	Х	2	3
	CO2	3	1	3	2	2	2	1	1	2	1	2	Х	Х	2	3
	CO3	2	1	2	2	2	1	1	1	2	1	2	Х	Х	2	3
	CO4	2	1	2	3	2	2	1	1	1	1	2	Х	Х	2	3
	CO5	2	1	2	3	2	2	1	2	2	2	3	2	Х	2	3
	CO6	1	1	1	2	2	3	2	2	2	1	2	Х	Х	2	3
ZOO10 1B	CO1	2	1	2	1	2	1	2	1	2	1	2	Х	Х	2	3
ID	CO2	3	1	3	2	2	2	1	1	2	1	2	Х	Х	2	3
	CO3	2	1	2	2	2	1	1	1	2	1	2	Х	Х	2	3
	CO4	2	1	2	3	2	2	1	1	1	1	2	Х	Х	2	3
	CO5	2	1	2	3	2	2	1	2	2	2	3	2	Х	2	3
	CO6	1	1	1	2	2	3	2	2	2	1	2	Х	Х	2	3
		•				S	emeste	er-II	•	•	•				•	
PBC201	CO1	1	2	1	3	1	2	1	2	3	1	2	3	1	2	2
	CO2	1	1	3	1	Х	1	Х	1	1	3	1	2	2	3	3
	CO3	3	Х	2	Х	2	Х	2	1	2	1	3	2	2	1	1
	CO4	2	3	1	1	3	2	2	Х	2	2	1	1	Х	2	2
	CO5	2	2	Х	1	1	3	1	2	Х	2	2	Х	3	X	1
	CO6	Х	1	2	2	1	1	3	2	1	Х	2	1	2	1	1
HCP201	CO1	Х	2	1	Х	2	Х	Х	Х	X	1	2	1	2	Х	1
	CO2	Х	2	1	Х	2	Х	Х	Х	Х	1	2	1	2	X	1
	CO3	Х	2	1	1	2	Х	Х	Х	X	1	2	1	2	Х	1
	CO4	Х	2	1	1	2	Х	Х	Х	3	1	2	1	2	Х	2

	CO5	X	2	1	Х	2	Х	Х	X	3	1	2	1	2	Х	2
				1												
	CO6	Х	2	1	Х	2	Х	Х	Х	Х	1	2	1	2	Х	1
CHM201	CO1	3	1	1	2	1	1	2	2	1	1	2	2	Х	3	3
A1	CO2	3	1	1	2	1	1	2	2	1	1	2	2	X	3	3
	CO3	3	1	1	2	1	1	2	2	1	1	2	2	X	3	3
	CO4	3	1	1	2	1	1	2	2	1	1	2	2	Х	3	3
	CO5	3	1	1	2	1	1	2	2	1	1	2	2	X	3	3
	CO6	3	1	1	2	1	1	2	2	1	1	2	2	X	3	3
CHM201	CO1	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
A2	CO2	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO3	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO4	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO5	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO6	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
СН	CO1	3	1	1	1	2	1	2	2	1	1	2	2	Х	2	3
201A3	CO2	3	1	1	1	2	1	2	2	1	1	2	2	Х	2	3
	CO3	3	1	1	1	2	1	2	2	1	1	2	2	Х	2	3
	CO4	3	1	1	1	2	1	2	2	1	1	2	2	Х	2	3
	CO5	3	1	1	1	2	1	2	2	1	1	2	2	Х	2	3
	CO6	3	1	1	1	2	1	2	2	1	1	2	2	Х	2	3
BOT20	CO1	3	1	2	3	2	2	3	2	2	2	3	Х	X	3	2
1A	CO2	3	1	2	3	2	3	2	3	3	3	2	Х	X	2	3
	CO3	3	1	3	3	3	3	2	2	1	1	2	Х	Х	3	3
	CO4	3	1	2	2	3	2	2	2	2	Х	2	Х	Х	1	3
	CO5	3	1	2	1	1	2	1	2	3	1	2	X	X	2	3
BOT201B	CO1	3	1	2	3	2	2	3	2	2	2	3	Х	X	2	3
	CO2	3	1	2	2	2	3	2	2	3	1	2	Х	Х	2	3

	CO3	3	1	3	3	3	3	1	2	1	2	1	Х	X	3	3
	CO4	3	1	2	2	3	2	3	2	2	Х	2	Х	Х	1	3
	CO5	3	1	2	2	1	2	2	3	2	Х	2	Х	Х	3	3
	CO6	3	1	2	2	1	2	2	3	2	X	2	X	X	3	3
ZOO201	CO1	2	1	2	1	2	1	2	1	2	1	2	X	Х	2	3
Α	CO2	3	1	3	2	2	2	1	1	2	1	2	Х	Х	2	3
	CO3	2	1	2	2	2	1	1	1	2	1	2	Х	Х	2	3
	CO4	3	1	2	3	2	2	1	1	1	1	2	Х	Х	2	3
	CO5	2	1	2	3	2	2	1	2	3	3	3	2	Х	2	3
	CO6	1	1	1	2	2	3	2	2	3	3	3	Х	Х	2	3
ZOO201	CO1	2	1	2	1	2	1	2	1	2	1	2	Х	Х	2	3
B	CO2	3	1	3	2	2	2	1	1	2	1	2	Х	Х	2	3
	CO3	2	1	2	2	2	1	1	1	2	1	2	Х	Х	2	3
	CO4	3	1	2	3	2	2	1	1	3	3	3	Х	Х	2	3
	CO5	2	1	2	3	2	2	1	2	3	3	3	2	Х	2	3
	CO6	1	1	1	2	2	3	2	2	3	3	3	Х	Х	2	3
						Se	emeste	r-III					•	•		•
ENG301	CO1	2	2	2	1	2	1	Х	Х	Х	Х	1	1	2	1	X
	CO2	2	3	2	1	1	1	Х	Х	Х	Х	1	1	2		Х
	CO3	2	2	2	1	1	1	Х	Х	Х	Х	1	1	2	1	Х
	CO4	2	2	2	1	2	2	Х	Х	Х	Х	1	1	2	2	Х
	CO5	2	2	2	1	1	1	Х	Х	Х	Х	1	1	2	1	Х
	CO6	2	2	3	1	1	1	Х	Х	Х	Х	1	1	2	1	Х
CHM301	CO1	2	2	1	1	1	1	1	1	1	1	1	2	Х	2	2
A1	CO2	2	2	1	1	1	1	1	1	1	1	1	2	Х	2	2
	CO3	2	2	1	1	1	1	1	1	1	1	1	2	Х	2	2
	CO4	2	2	1	1	1	1	1	1	1	1	1	2	Х	2	2
L	L	L		1	1	1	1	1	1	1	1	1	1	1	l	

													-		_	
	CO5	2	2	1	1	1	1	1	1	1	1	1	2	Х	2	2
	CO6	2	2	1	1	1	1	1	1	1	1	1	2	Х	2	2
CHM301	CO1	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
A2	CO2	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO3	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO4	2	2	1	1	1	1	1	1	1	1	1	1	X	2	2
	CO5	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO6	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
CHM3	CO1	2	1	1	1	1	1	1	1	1	1	1	1	Х	Х	Х
01A3	CO2	2	Х	1	2	2	1	Х	1	1	2	Х	Х	Х	1	1
	CO3	1	1	1	2	2	1	1	1	2	1	Х	Х	1	1	1
	CO4	1	Х	1	1	1	1	1	1	Х	Х	Х	Х	1	2	2
	CO5	2	1	1	2	1	1	1	1	1	Х	Х	Х	2	1	1
	CO6	2	1	1	2	1	1	1	1	1	Х	Х	Х	2	1	1
BOT30	CO1	3	1	3	2	3	2	3	2	3	1	3	Х	Х	2	3
1A	CO2	3	1	2	3	2	3	2	2	2	1	2	Х	Х	3	2
	CO3	3	1	3	3	3	3	2	2	2	1	2	Х	Х	2	3
	CO4	3	1	1	2	3	2	2	2	2	Х	2	Х	Х	1	3
	CO5	3	1	2	2	1	2	1	2	1	Х	2	Х	Х	2	3
	CO6	3	1	2	2	1	2	1	2	1	Х	2	Х	Х	2	3
BOT301B	CO1	3	1	2	2	3	3	3	3	2	1	3	X	X	2	3
	CO2	3	1	2	2	2	3	2	2	3	1	2	Х	Х	3	3
	CO3	3	1	3	3	3	2	2	2	2	Х	2	X	X	2	3
	CO4	3	1	3	2	1	2	2	2	1	1	3	Х	Х	1	2
	CO5	3	1	2	2	3	3	1	2	2	Х	2	X	X	2	2
	CO6	3	1	2	2	3	3	1	2	2	Х	2	X	X	2	2
ZOO301A	CO1	2	2	3	1	1	1	2	1	2	1	2	Х	Х	2	3

	COA	3	2	3	2	1	2	1	1	2	1	2	X	X	2	3
	CO2						2	1	1		1					
	CO3	2	2	2	2	2	1	1	1	2	1	2	Х	Х	2	3
	CO4	2	2	2	2	2	2	1	1	1	1	2	Х	Х	2	3
	CO5	2	2	2	2	2	2	1	2	2	2	3	2	Х	2	3
	CO6	2	2	3	2	2	3	2	2	2	1	2	Х	Х	2	3
ZOO301	CO1	2	1	1	3	3	2	3	2	2	3	X	1	X	3	3
В	CO2	3	2	2	3	2	1	1	2	2	3	Х	1	Х	1	3
	CO3	2	2	3	3	3	2	1	1	2	2	2	Х	1	2	3
	CO4	2	1	3	3	2	2	2	1	2	3	1	1	Х	2	2
	CO5	3	2	3	3	3	2	2	2	3	2	2	2	2	3	3
	CO6	2	2	2	3	3	2	3	2	3	2	3	2	2	2	3
						Se	emeste	r-IV	I	I		I	I	I	I	1
ENG401	CO1	2	3	2	1	2	1	X	1	X	1	2	2	2	1	1
	CO2	2	3	2	1	2	1	Х	1	Х	1	2	2	2	1	1
	CO3	2	3	2	1	2	1	X	1	X	1	2	2	2	1	1
	CO4	2	3	2	1	2	1	Х	1	Х	1	2	1	2	1	1
	CO5	2	3	2	1	2	1	Х	1	Х	1	2	2	2	1	1
	CO6	2	3	3	1	3	1	X	1	X	1	2	2	2	1	1
CHM401	CO1	3	1	1	1	1	1	2	2	1	1	2	2	X	3	3
A1	CO2	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO3	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO4	3	1	1	1	1	1	2	2	1	1	2	2	X	3	3
	CO5	3	1	1	1	1	1	2	2	1	1	2	2	X	3	3
	CO6	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
CHM401	CO1	2	1	1	1	2	1	1	3	1	1	2	2	Х	3	3
A2	CO2	2	1	1	1	2	1	1	3	1	1	2	2	X	3	3
	CO3	2	1	1	1	2	1	1	3	1	1	2	2	X	3	3

	<u> </u>	2	1	1	1	2	1	1	3	1	1	2	2	X	3	3
	CO4		1		1			1		1	1					
	CO5	2	1	1	1	2	1	1	3	1	1	2	2	Х	3	3
	CO6	2	1	1	1	2	1	1	3	1	1	2	2	Х	3	3
CHM4	CO1	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
01A3	CO2	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
-	CO3	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
-	CO4	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
-	CO5	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
-	CO6	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
BOT401A	CO1	3	1	2	3	2	3	3	3	3	2	3	X	Х	3	2
-	CO2	3	1	2	2	2	3	2	2	2	1	2	Х	Х	2	3
-	CO3	3	1	3	3	3	2	2	2	2	2	2	Х	Х	3	2
-	CO4	3	1	3	2	1	2	2	2	1	Х	3	Х	Х	2	3
-	CO5	3	1	2	2	3	3	1	2	2	2	2	Х	Х	1	2
-	CO6	3	1	2	2	3	3	1	2	2	2	2	Х	Х	1	2
BOT401B	CO1	3	1	2	2	3	3	3	3	2	1	3	Х	Х	2	3
-	CO2	3	1	3	2	2	3	2	2	3	1	Х	Х	Х	3	3
-	CO3	3	1	2	3	3	2	2	2	2	Х	2	Х	Х	2	3
-	CO4	3	1	3	2	1	2	2	2	1	1	3	Х	Х	1	2
	CO5	3	1	2	2	3	3	1	2	2	Х	2	X	X	2	2
	CO6	3	1	2	2	3	3	1	2	2	Х	2	X	Х	2	2
ZOO401A	CO1	2	2	3	1	1	1	2	1	2	1	2	X	Х	2	3
	CO2	3	2	3	2	1	2	1	1	2	1	2	X	X	2	3
	CO3	2	2	2	2	2	1	1	1	2	1	2	X	X	2	3
	CO4	2	2	2	2	2	2	1	1	1	1	2	Х	Х	2	3
	CO5	2	2	2	2	2	2	1	2	2	2	3	2	X	2	3
	CO6	2	2	3	2	2	3	2	2	2	1	2	Х	Х	2	3

ZOO401	CO1	2	1	2	2	3	2	3	2	1	3	X	1	X	2	3
В	CO2	3	2	2	2	2	1	2	2	1	3	X	X	X	1	3
	CO3	2	1	2	3	2	2	2	1	1	2	1	X	X	2	3
		2	1	1	3	2	2	2	1	2	2	1	1	X	2	2
	CO4															
	CO5	3	1	2	2	2	2	2	2	2	2	1	1	Х	2	3
	CO6	2	2	2	2	3	2	3	2	2	2	1	1	Х	2	3
						S	emeste	er-V								
CHM501	CO1	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
A1	CO2	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO3	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO4	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO5	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
	CO6	2	2	1	1	1	1	1	1	1	1	1	1	Х	2	2
CHM501	CO1	3	2	1	1	1	1	2	1	1	1	1	1	Х	1	1
A2	CO2	3	2	1	1	1	1	2	1	1	1	1	1	Х	1	1
	CO3	3	2	1	1	1	1	2	1	1	1	1	1	Х	1	1
	CO4	3	2	1	1	1	1	2	1	1	1	1	1	Х	1	1
	CO5	3	2	1	1	1	1	2	1	1	1	1	1	Х	1	1
	CO6	3	2	1	1	1	1	2	1	1	1	1	1	Х	1	1
CHM5	CO1	2	1	2	2	2	Х	1	1	1	Х	1	Х	Х	2	2
01A3	CO2	1	2	1	2	1	Х	1	2	Х	Х	Х	Х	Х	2	2
	CO3	3	1	1	2	1	1	1	1	Х	Х	Х	Х	Х	1	1
	CO4	1	1	1	1	1	Х	Х	Х	1	Х	Х	Х	Х	2	1
	CO5	2	2	2	2	1	1	1	2	X	1	1	X	Х	2	2
	CO6	2	2	2	2	1	1	1	2	Х	1	1	X	Х	2	2
BOT501A	CO1	3	1	3	2	3	3	3	3	3	1	3	X	X	2	3
	CO2	3	1	2	2	2	2	2	2	3	Х	2	X	X	2	3

[r	1	1	1	1	1	r						1		,
	CO3	3	1	3	3	3	3	2	2	2	1	2	Х	Х	3	2
	CO4	3	1	3	2	3	2	2	2	1	1	3	Х	X	1	2
	CO5	3	1	2	2	1	3	1	2	2	Х	2	Х	Х	2	3
	CO6	3	1	2	2	1	3	1	2	2	Х	2	Х	Х	2	3
BOT501B	CO1	3	1	2	2	3	3	3	3	2	1	3	Х	Х	2	3
	CO2	3	1	2	2	2	3	2	2	3	1	2	Х	X	3	3
	CO3	3	1	3	3	3	2	2	2	2	Х	2	Х	Х	2	3
	CO4	3	1	3	2	1	2	2	2	1	1	3	Х	Х	1	2
	CO5	3	1	2	2	3	3	1	2	2	Х	2	Х	X	2	2
	CO6	3	1	2	2	3	3	1	2	2	Х	2	Х	Х	2	2
ZOO501A	CO1	2	2	1	3	3	2	3	2	2	2	2	1	1	3	3
	CO2	3	2	2	3	2	1	1	2	2	3	1	1	X	1	2
	CO3	2	3	3	2	3	2	1	2	2	2	2	Х	Х	2	3
	CO4	2	1	3	3	2	3	2	1	2	3	1	1	Х	2	3
	CO5	3	2	3	3	3	2	2	2	3	2	2	2	Х	3	2
	CO6	2	2	2	3	3	2	3	2	3	2	3	2	Х	2	2
ZOO501	CO1	3	1	1	1	2	2	2	3	2	2	3	Х	Х	2	3
В	CO2	3	1	2	2	2	2	2	2	2	2	2	Х	Х	2	2
	CO3	3	1	2	2	1	2	2	2	2	3	3	1	Х	2	3
	CO4	2	1	2	3	2	2	2	2	2	3	3	1	Х	2	3
	CO5	2	1	3	3	2	2	3	3	2	3	1	Х	Х	2	2
	CO6	2	1	3	2	2	2	3	2	2	2	2	Х	Х	2	2
						Se	emeste	r-VI								·
CHM601	CO1	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
A1	CO2	3	1	1	1	1	1	2	2	1	1	2	2	X	3	3
	CO3	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO4	3	1	1	1	1	1	2	2	1	1	2	2	X	3	3
									l				l			

		1		1	1	1	1	1	1	1			1	1		1
	CO5	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO6	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
CHM601	CO1	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
A2	CO2	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO3	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO4	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO5	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
	CO6	3	1	1	1	1	1	2	2	1	1	2	2	Х	3	3
CHM6	CO1	2	1	1	2	1	1	2	2	1	1	2	2	Х	2	3
01A3	CO2	2	1	1	2	1	1	2	2	1	1	2	2	Х	2	3
	CO3	2	1	1	2	1	1	2	2	1	1	2	2	Х	2	3
	CO4	2	1	1	2	1	1	2	2	1	1	2	2	Х	2	3
	CO5	2	1	1	2	1	1	2	2	1	1	2	2	Х	2	3
	CO6	2	1	1	2	1	1	2	2	1	1	2	2	Х	2	3
BOT601A	CO1	3	1	2	2	3	3	3	3	2	1	3	Х	Х	2	3
	CO2	3	1	2	2	2	3	2	2	3	2	2	Х	Х	3	2
	CO3	3	1	3	3	3	2	3	2	2	1	2	Х	Х	2	3
	CO4	3	1	3	2	1	2	2	3	1	Х	2	Х	Х	1	3
	CO5	3	1	2	2	3	3	1	2	2	X	3	Х	Х	2	2
	CO6	3	1	2	2	3	3	1	2	2	Х	3	Х	Х	2	2
BOT601B	CO1	3	1	2	2	3	3	3	3	2	1	3	Х	Х	2	3
	CO2	3	1	2	2	2	3	2	2	3	Х	2	X	X	2	2
	CO3	3	1	3	3	3	2	2	3	2	1	1	Х	Х	3	2
	CO4	3	1	3	2	1	2	2	2	1	1	3	Х	Х	2	3
	CO5	3	1	2	2	3	3	1	2	2	Х	2	Х	Х	1	2
	CO6	3	1	2	2	3	3	1	2	2	Х	2	Х	Х	1	2
ZOO601A	CO1	3	2	3	3	2	1	1	1	2	2	3	Х	Х	2	3

	CO2	2	2	3	3	2	1	1	1	2	2	2	Х	Х	2	3
	CO3	2	2	3	3	2	2	Х	1	2	1	3	1	Х	2	3
	CO4	3	2	3	3	2	2	Х	1	2	2	3	1	Х	2	3
	CO5	3	2	3	3	2	1	1	1	2	3	2	Х	Х	2	3
	CO6	3	2	3	3	2	2	1	1	3	2	2	Х	Х	2	3
ZOO601	CO1	3	1	2	1	3	3	3	2	2	3	2	1	Х	3	3
В	CO2	3	1	3	2	2	1	3	2	2	3	2	1	Х	2	3
	CO3	3	1	2	3	2	2	3	2	2	2	2	Х	1	2	3
	CO4	3	2	1	2	1	2	3	2	2	3	1	1	Х	2	3
	CO5	3	2	1	Х	1	1	3	2	3	2	2	2	Х	3	3
	CO6	3	2	2	1	1	2	3	2	3	2	3	2	Х	2	3

Mapping of Course Outcomes(COs) with programme Specific outcomes(PSOs)

College code	Course Out-	PSO						
Conege coue	comes	1	2	3	4	5	6	7
PBC101	CO1	1	2	3	2	1		
	CO2	2	1	1	1	3		
	CO3	2	1	1	1	2		
	CO4	1	3	2	2	2		
	CO5	3	2	2	3	1		
	CO6	1	1	1	2	1		
HCP101	CO1	Х	X	Х	Х	Х	X	2
	CO2	Х	Х	Х	Х	Х	Х	2
	CO3	Х	Х	Х	Х	Х	Х	2
	CO4	Х	X	Х	Х	Х	Х	2
	CO5	Х	X	Х	Х	Х	Х	2
	CO6	Х	Х	Х	Х	Х	Х	2

CHM101A1	CO1	3	3	2	2	1	3	3
CINVITVIAL	CO1							
	CO2	3	3	2	2	1	3	3
	CO3	3	3	2	2	1	3	3
	CO4	3	3	2	2	1	3	3
	CO5	3	3	2	2	1	3	3
	CO6	3	3	2	2	1	3	3
CHM101A2	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM101	CO1	3	3	3	2	1	3	3
A3	CO2	3	3	3	2	1	3	3
	CO3	3	3	3	2	1	3	3
	CO4	3	3	3	2	1	3	3
	CO5	3	3	3	2	1	3	3
	CO6	3	3	3	2	1	3	3
BOT101A	CO1	3	2	3	3	3	2	3
	CO2	3	2	3	2	2	3	3
	CO3	2	2	2	3	2	3	2
	CO4	1	3	1	1	2	2	1
	CO5	3	2	1	2	1	1	3
	CO6	3	2	1	2	1	1	3
BOT101B	CO1	3	3	3	3	3	3	3
	CO2	3	2	3	2	2	2	2
	CO3	1	2	2	3	3	3	1

	CO4	2	3	1	1	2	2	2
	CO5	3	1	1	2	1	1	3
	CO6	3	1	1	2	1	1	3
ZOO101A	C01	3	2	3	2	2	2	2
2001011		3	2	3	2	2	2	2
	CO2							
	CO3	3	2	3	2	3	2	2
	CO4	2	2	3	2	3	2	2
	CO5	3	2	3	2	2	2	1
	CO6	3	2	3	2	2	2	1
ZOO101B	CO1	3	2	3	2	2	2	2
	CO2	3	2	3	2	2	2	2
	CO3	3	2	3	2	3	2	2
	CO4	2	2	3	2	3	2	2
	CO5	3	2	3	2	2	2	1
	CO6	3	2	3	2	2	2	1
PBC201	CO1	2	1	3	2	2	2	3
	CO2	3	1	2	3	1	3	2
	CO3	2	2	1	1	2	1	1
	CO4	2	2	1	1	2	1	1
	CO5	1	1	2	2	1	2	2
	CO6	1	3	2	1	3	1	2
HCP201	CO1	X	Х	Х	Х	Х	Х	2
	CO2	X	X	Х	Х	Х	Х	2
	CO3	X	X	Х	Х	Х	X	2
	CO4	X	Х	Х	Х	Х	X	2
	CO5	X	Х	Х	Х	Х	X	2
	CO6	Х	Х	Х	Х	Х	Х	2
CHM201A1	CO1	3	3	2	2	2	3	3

		T						
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM201A2	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CH 201A3	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
BOT201A	CO1	3	3	3	3	3	2	3
	CO2	3	2	3	2	2	3	2
	CO3	2	2	2	3	2	3	3
	CO4	2	3	1	1	2	2	2
	CO5	3	2	2	1	1	2	3
	CO6	3	2	2	1	1	2	3
BOT201B	C01	3	3	3	2	3	2	3
	CO2	3	2	3	3	2	3	3
	CO3	2	3	2	3	2	3	3
	CO4	2	3	1	2	2	2	1
	CO5	3	2	2	2	1	1	3
	CO6	3	2	2	2	1	1	3

ZOO201A	C01	3	2	3	2	2	2	2
	CO2	3	2	3	2	2	2	2
	CO3	3	2	3	2	3	2	2
	CO4	2	2	3	2	3	2	2
	CO5	3	2	3	2	2	2	1
	CO6	3	2	3	2	2	2	1
ZOO201B	CO1	3	2	3	2	2	2	2
	CO2	3	2	3	2	2	2	2
	CO3	3	2	3	2	3	2	2
	CO4	2	2	3	2	3	2	2
	CO5	3	2	3	2	2	2	1
	CO6	3	2	3	2	2	2	1
ENG301	CO1	X	Х	Х	3	Х	2	Х
	CO2	X	X	Х	3	Х	2	Х
	CO3	X	X	Х	3	Х	2	Х
	CO4	X	X	Х	3	Х	2	Х
	CO5	X	X	Х	3	Х	2	Х
	CO6	X	X	Х	3	Х	2	Х
CHM301A1	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM301A2	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3

	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM301	CO1	3	3	2	2	2	3	3
A3	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
BOT301A	CO1	2	3	3	3	3	3	2
	CO2	3	2	3	2	2	3	3
	CO3	2	2	2	3	2	1	1
	CO4	1	3	1	1	2	2	2
	CO5	3	2	1	2	1	3	3
	CO6	3	2	1	2	1	3	3
BOT301B	CO1	3	2	3	2	3	2	3
	CO2	3	3	3	3	2	2	3
	CO3	1	2	1	3	3	3	2
	CO4	2	3	2	1	2	2	2
	CO5	3	2	1	2	1	1	3
	CO6	3	2	1	2	1	1	3
ZOO301A	CO1	3	2	3	2	2	2	2
	CO2	3	2	3	2	2	2	2
	CO3	3	2	3	2	3	2	2
	CO4	2	2	3	2	3	2	2
	CO5	3	2	3	2	2	2	1
	CO6	3	2	3	2	2	2	1
ZOO301B	CO1	2	3	3	3	2	3	3

					2	2	2	2
	CO2	2	3	2	3	2	3	3
	CO3	3	3	2	3	3	2	3
	CO4	2	2	3	3	3	2	3
-	CO5	3	3	3	3	3	3	3
	CO6	3	3	3	3	3	3	3
ENG401	CO1	X	X	Х	3	Х	2	Х
-	CO2	X	X	Х	3	Х	2	Х
	CO3	X	X	Х	3	Х	2	X
-	CO4	X	X	Х	3	Х	2	X
	CO5	X	X	Х	3	Х	2	Х
	CO6	X	X	Х	3	Х	2	Х
CHM401A1	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
-	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM401A2	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM401	CO1	3	3	2	2	2	3	3
A3	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3

	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
BOT401A	CO1	3	2	3	2	3	2	3
	CO2	3	3	3	3	2	2	3
	CO3	1	2	1	3	3	3	2
	CO4	2	3	2	1	2	2	3
	CO5	3	2	1	2	1	2	2
	CO6	3	2	1	2	1	2	2
BOT401B	CO1	3	3	2	2	3	3	2
	CO2	3	3	3	3	2	2	3
	CO3	2	2	1	3	3	3	2
	CO4	2	2	1	1	2	1	2
	CO5	3	3	2	2	1	2	3
	CO6	3	3	2	2	1	2	3
ZOO401A	CO1	3	2	3	2	2	2	2
	CO2	3	2	3	2	2	2	2
	CO3	3	2	3	2	3	2	2
	CO4	2	2	3	2	3	2	2
	CO5	3	2	3	2	2	2	1
	CO6	3	2	3	2	2	2	1
ZOO401B	CO1	2	3	3	3	2	3	3
	CO2	2	3	2	3	2	3	3
	CO3	3	3	2	3	3	2	3
	CO4	2	2	3	3	3	2	3
	CO5	3	3	3	3	3	3	3
	CO6	3	3	3	3	3	3	3
CHM501A1	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3

						2		
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM501A2	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM501	CO1	3	3	2	2	2	3	3
A3	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
BOT501A	CO1	3	2	3	2	3	2	3
	CO2	3	3	3	3	3	2	3
	CO3	2	2	2	3	3	3	1
	CO4	2	3	1	2	2	2	3
	CO5	3	2	1	2	1	2	2
	CO6	3	2	1	2	1	2	2
BOT501B	CO1	3	2	3	2	3	2	3
	CO2	3	3	3	3	2	2	3
	CO3	1	2	1	3	3	3	2
	CO4	2	3	2	1	2	2	2
	CO5	3	2	1	2	1	1	3
	CO6	3	2	1	2	1	1	3

ZOO501A	CO1	2	3	3	3	2	3	3
	CO2	2	3	2	3	2	3	3
	CO2	3	3	2	3	3	2	3
-		2		3	3	3	2	3
	CO4		2					
	CO5	3	3	3	3	3	3	3
	CO6	3	3	3	3	3	3	3
ZOO501B	CO1	2	3	3	3	2	3	3
	CO2	2	3	2	3	2	3	3
	CO3	3	3	2	3	3	2	3
-	CO4	2	2	3	3	3	2	3
	CO5	3	3	3	3	3	3	3
	CO6	3	3	3	3	3	3	3
CHM601A1	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM601A2	CO1	3	3	2	2	2	3	3
	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3
	CO4	3	3	2	2	2	3	3
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
CHM601	CO1	3	3	2	2	2	3	3
A3	CO2	3	3	2	2	2	3	3
	CO3	3	3	2	2	2	3	3

		3	3	2	2	2	3	3
	CO4							
	CO5	3	3	2	2	2	3	3
	CO6	3	3	2	2	2	3	3
BOT601A	CO1	3	2	3	2	3	3	2
	CO2	3	3	3	3	2	2	3
	CO3	1	2	2	3	3	3	2
	CO4	3	3	1	1	2	1	3
	CO5	2	2	1	2	1	2	2
	CO6	2	2	1	2	1	2	2
BOT601B	CO1	3	2	3	2	3	2	3
	CO2	3	3	1	3	3	2	3
	CO3	2	2	2	2	2	1	2
	CO4	2	3	2	2	1	2	2
	CO5	3	2	1	1	2	3	3
	CO6	3	2	1	1	2	3	3
ZOO601A	CO1	2	3	3	3	2	3	3
	CO2	2	3	2	3	2	3	3
	CO3	3	3	2	3	3	2	3
	CO4	2	2	3	3	3	2	3
	CO5	3	3	3	3	3	3	3
	CO6	3	3	3	3	3	3	3
ZOO601B	CO1	2	3	3	3	2	3	3
	CO2	2	3	2	3	2	3	3
	CO3	3	3	2	3	3	2	3
	CO4	2	2	3	3	3	2	3
	CO5	3	3	3	3	3	3	3
	CO6	3	3	3	3	3	3	3