Department of Chemistry

About the Department

Chemistry department was founded as the part of undergraduate science faculty inaugurated by Jathedar S. Gurcharan Singh Tohra ji, (Pardhan S.G.P.C.) on 2nd March, 1996 under the leadership of Principal Prof. Jaswant Singh sandhu. Later on, in August, 2014 the department has introduced Post Graduate Programme, M.Sc. Chemistry under the leadership of Pricinpal Prof. Preetmohinder Pal Singh. The department furnishes the opportunity for students to obtain comprehensive fundamental knowledge of all fields of chemistry such as organic, inorganic, physical, biophysical and analytical. It also provides students with laboratory experience in inorganic and organic synthesis, analytical methods and physical chemical measurements. Thus department of chemistry offers both theoretical and practical knowledge of chemistry. Chemistry plays a key role in the studies of medicine, biology and technology. Chemistry department has close cooperation with other disciplines such as physics, mathematics and biology. Faculty members are available as academic advisors for consultation about their courses. They have a good rapport with the students. Faculty members motivate and guide students about various career opportunities. Frequent seminars, webinars have been organized for the benefit of teachers as well as students. Currently the department has three chemistry laboratories which are equipped with latest chemicals, apparatus and instruments.

Vision

The Department of Chemistry aspires to excel in chemical education and services. The faculty members are dedicated to excel in teaching. They are deeply engaged in production and dissemination of knowledge using modern pedagogy in the classroom. It is a goal of a faculty to instill in the student a sense of scientific enquiry that employs systematic and experimental approach.

Mission

The Department of Chemistry is committed to prepare competitive and professional graduates within an innovative and intellectually stimulating environment by offering high quality chemistry experiments, conduct basic and applied research of national and international impact and build proactive partnership with industries and offer effective training and technical services to the society. The Department of Chemistry pledges itself to encourage in the broadest and most liberal manner, the advancement of chemistry in all the branches through education, research and service mission.

Objectives

*To furnish a comprehensive foundation in chemistry that emphasizes scientific reasoning and analytical problem solving capability

*To provide student with the requisite skills for achieving success in academics and in forthcoming careers opportunities

*To provide a broad exposure to students about various experimental techniques

*To make the department a thriving center of excellence in teaching and promoting chemistry

*Department aims at chemistry outreach in the form of books and other chemistry education activities that illustrates role of chemistry as central science

*To make the students aware of the application of scientific principles, chemistry in particular, to societal issues

Programme Outcomes (POs) of M. Sc. (Chemistry)

Purpose of post-graduate education in Science is to create highly skilled manpower in specific areas, which will lead to generation of new knowledge and creation of wealth for the country. Chemistry is a fundamental science and has contributed immensely to the improvement of the life of human beings by providing many of human requirements and essentialities. Chemistry is important to the world economy as well. The developments in Chemistry during last few decades are phenomenal. It is also seen that these developments are crossing the traditional vertical boundaries of scientific disciplines; the more inclination is seen towards biological sciences. New branches of chemistry are emerging and gaining importance, such as bioorganic chemistry, materials chemistry, computational chemistry, etc. The practice of Chemistry at industrial scale also is undergoing radical changes and is more or more based on deep understanding the chemical phenomena. The emerging Chemical Technologies are highly science based. The aid of computers has not only accelerated growth in the practice of Chemistry, but revolutionized the entire field. A Chemist cannot isolate himself from other disciplines. Thus, after a long span of more and more specialization in graduate and post-graduate syllabi, a symbiotic interdisciplinary approach now seems to be more relevant. The practice of Chemistry, as is witnessed, over a span of more than a century has also created concomitant and perhaps unavoidable impacts of human environment. The adverse effects were particularly noted during last few decades. The concept of sustainable development is now well accepted. Though not a separate branch of Chemistry, Green Chemistry has emerged as a new approach to the practice of Chemistry on the background of sustainability. The Chemical Industry is now pressurized from both the Government and the Society to develop ecofriendly processes and products which will reduce waste and prevent toxic substances from entering the environment. The principles and applications of Chemistry should be learnt on this background. M.Sc. Chemistry is a Post-Graduate Degree that is pursued by a student who has an Under Graduate Degree in the relevant field. The duration of the course is 2 years with 4 semesters included in the course. A bachelor's degree of 3 years in the relevant field from a recognized university with a minimum of 50% is eligible for this course. This course deals with Chemistry as a major subject with more concerned with physical, organic, inorganic Chemistry. This course allows you to specialize in a specific field of chemistry. MSc Chemistry has a wider range of scope in various fields such as pharmaceuticals and various research-based industries. Learning Outcome based Approach to Curricular Planning Nature & Extent of M.Sc. Chemistry Programme Chemistry is a branch of science which deals with matters and it's composition. In doing a Master of Science in Chemistry the students will dive into the subatomic level of particle creation, how synthetic compounds can be created and implemented. The specialized course of Chemistry will deal with the composition, behaviour, structure, and properties of Matter and other specific technical aspects with a detailed explanation. Chemistry is the science of matter and the changes effected by it. The science of matter is also a part of the discipline of Physics, but while Physics is more practical and applies a fundamental approach, Chemistry is more specialized and deals with topics such as the composition, behaviour, structure, and properties of matter. Chemistry provides an understanding of the physical and chemical process of atom and molecules and it focuses on the practical methods of creation of new molecular structures and its useful applications. Chemistry contains the basic principles of structural bonding between atoms and bonds. This subject contains a wide range of chemical reactions and shows how energy is being created. Chemistry is a physical science and is used in the investigation and assemblages of matter which could either be isolation and

combination incorporating concepts of energy and entropy in relation to the chemical process. The specific course will be divided into four semesters and the nature of the course will be oriented more towards nature and also to a lot of lucrative job opportunities. Aim of M.Sc. Chemistry Programme Highly qualified chemists are crucial to help develop tomorrow's solutions. By taking a Master (MSc) degree in chemistry, you will gain fundamental insights into chemical compounds with applications in medicine, catalysis, alternative energy sources and many other areas. Maybe you want to develop better solutions for a sustainable future or to understand more about global environmental issues affecting today's society? Accept the challenge and join us in creating a better future. The objective of the 2-year MSc in chemistry is to educate chemists to work independently with chemistry at a high level. Through lectures, laboratory work, exercises, and project work, as well as excursions, and you will gain knowledge about relevant working methods for research, industry, administration and education. The Master's degree in Chemistry also forms the foundation for doctoral programmes in Chemistry. You'll enter into a professional environment that is scientifically strong within all three specializations. The two-year Master's degree programme in chemistry provides academic specialization within the following areas: Inorganic, Organic and Physical chemistry. The main objectives are: • To impart training in Chemistry at advanced level in a more holistic way and enthuse the students for the subject. • To train the students to make them confident and capable of accepting any challenge in Chemistry. • To give a flavour of research in Chemistry and train the students for research career. • To abreast the students about the current status and new developments in Chemistry. • To make the students aware of the impact of Chemistry on environment and imbibe the concept of sustainable developments, • To educate the students with respect to skills and knowledge to practice chemistry in ways that are benign to health and environment, • To provide flexibility in selecting some of the courses as per the interest and also to provide space for fast learners, • To make the students aware of resources and make them capable of mining the data.

Course Outcomes (COs) of Various Courses of M.Sc. (Chemistry)

Semester	Course title	College	Univ.		Course outcomes								
		Subject	Subject	On completion of the course students will be able to									
		Code	Code		1								
	Inorganic	CHM-101	CH-411	CO1	Learn Metal-Ligand Equilibria in Solution								
G 1	Chemistry 1		-	CO2	Create awareness about Metal Ligand Bonding								
Sem-1.				CO3	Understanding Reaction Mechanism of Transition Metal Complexes.								
				CO4	Demonstrate the stereochemistry and Bonding								
				CO5	Acquire the knowledge about Bent rule								
	Organic Chemistry 1	CHM-102	CH-412	CO1	Acquire knowledge of Nature of Bonding in Organic Molecule								
				CO2	Inculcate Nature of Bonding in Organic Molecule,								
					Stereochemistry.								
				CO3	To learn aliphatic and Aromatic Electrophilic and								
					Nucleophilic Substitution								
					Nucleophilic Substitution								
				CO4	Demonstration of factors affecting the reactivities of								
					aliphatic and aromatic reactions.								
				CO5	To understand Von Richter, Sommelet-Hauser and smiles								
					rearrangements.								
	Physical	CHM-103	CH-413	CO1	Learn about Quantum Chemistry								
	Chemistry 1			CO2	Demonstration about Angular Momentum								
				CO3	Acquire knowledge about Thermodynamics and Statistical Thermodynamics.								
				CO4	To acquire knowledge about Huckel theory of conjugated systems.								
				CO5	To understand perturbation theory to the Helium atom.								
	Computer for Chemists	CHM-104	CH-414(a)	CO1	To understand Computer Programming In FORTRAN/C/BASIC								
				CO2	Demonstration of Word processing Software such as WORDSTAR/MS-WORD / EXCEL.								
				CO3	To gain knowledge about Linear simultaneous equations to solve secular equations within the Huckel theory.								
				CO4	Acquire knowledge of Use of Computer To Programmes								
				CO5	To learn Programming in Chemistry								
	Biology for	CHM-105	CH-414(b)	CO1	Learn about Cell Structure and functions, Carbohydrates.								
	Chemists		CII-414(0)	CO2	Demonstration about Lipids, Amino-acids, Peptides								
				CO3	Understanding the structures of Proteins, Nucleic Acids								
				CO4	Acquire knowledge about sugars.								
				C05	To demonstrate Purines and pyrimidines bases of nucleic acids.								
	Mathematics	CHM-106	CH-414(c)	CO1	Acquire knowledge of Vectors, Matrix Algebra								
	for Chemists			CO2	Inculcate Elementary Differential Equations								
				CO3	Demonstration of Differential Calculus, Permutation And Probability.								
				CO4	Understanding the Rules for differentiation, applications of differential								
				CO5	Awareness about curve sketching.								

	Laboratory	CHM-107	CH-415	CO1	To provide Practical knowledge of Gravimetric Estimation
	course	-	-		of two constituents when present together in a given
	(Inorganic				complex
	chemistry)			CO2	Analysis of two cation-system using EDTA
	Laboratory	CHM-108	CH-416	CO1	To determine corrected melting points of an unknown
	course				organic compounds.
	(Organic			CO2	Preparation of various organic compounds by different
	chemistry)				
	U /				methods.
	Laboratory	CHM-109	CH-417	CO1	To provide Practicalknowledge of Viscosity, Surface
	course				Tension
	(Physical			CO2	To provide Practical knowledge of Solubility Density
	chemistry)			CO2	Analysis of two cation-system using EDTA
	Laboratory	CHM-108	CH-416	CO1	To determine corrected melting points of an unknown
	course				organic compounds.
	(Organic			CO2	Preparation of various organic compounds by different
	chemistry)				methods.
	Inorganic	CHM-201	CH-421	CO1	Inculcate the knowledge of Electronic Spectra and
	chemistry 1				Magnetic Properties Of Transition Metal Complexes.
Sem-2					
				<u>CO2</u>	Creating awareness about Metal–Complexes.
					Elaboration of Metal Cluster.
				CO4	Acquire knowledge about carboranes, metallobranes and metallocarboranes.
				CO5	To understand Spectroscopic method of assignment of
					absolute configuration in optically active metal chelates.
	Organic	CHM-202	CH-422	C01	Inculcate the knowledge of Reaction Mechanism.
	chemistry 1			CO2	Demonstration of Structure and Reactivity Addition to Carbon-Carbon Multiple Bonds
				CO3	Elaboration about Free Radical Reactions, Pericyclic Reactions, Elimination Reaction.
				CO4	To learn regio and chemoselectivity, orientation and reactivity.
				CO5	Acquire knowledge about Hammond's postulate. Curtin-
					Hammett Principle.
	Physical	CHM-203	СН-423	CO1	Gain conceptual knowledge of Chemical Dynamics
	chemistry 1			CO2	To understand Non-equilibrium Thermodynamics
				CO3	Acquire knowledge about Macromolecules.
				CO4	Demonstration of Surface Chemistry ,Electrochemistry.
				CO5	To gain knowledge about Electrocatalysis.
	Group theory,	CHM-204	CH-424	CO1	Gain conceptual knowledge of Symmetry And Group Theory In Chemistry
	Spectroscopy			CO2	To learn about Microwave, Vibrational Spectroscopy
				CO3	Demonstration of Magnetic Resonance and Molecular
					Spectroscopy
				<u> </u>	Understanding representation for the Cr. Cry. Cry. Dur
				004	etc. group.
				CO5	To gain knowledge about Nuclear Quadrupole Resonance spectroscopy
	Laboratory	CHM-205	CH-425	CO1	Gain experimental knowledge of Preparation of various
					coordination compounds.
	course			CO2	Study of electronic spectrum and magnetic, Properties of

				-	· · · · · · · · · · · · · · · · · · ·
	(Inorganic				various coordination compounds
	chemistry)				
	Laboratory	CHM-206	CH-426	CO1	Qualitative Analysis of mixtures of two
	course				organic solids
	Organic			CO2	Gain experimental knowledge of mixtures
	Organic				of two organic solids
	chemistry)				
	Laboratory	CHM-207	CH-427	CO1	Gain experimental knowledge of Polarimetry
	course			CO2	Gain experimental knowledge Polarimetry,
	(Physical				Flame Photometry
	chemistry)				
Som_3	Applications	CHM-301	СН-511	CO1	Inculcate the knowledge of Electron Spin Resonance
Sem-5	of				Spectroscopy Mossbauer and Vibrational Spectroscopy
				GOA	
	spectroscopy			CO2	Paramagnetic Substances in Solution
				CO3	Demonstration of Carbon-13 NMR spectroscopy and mass
				<u> </u>	spectroscopy
				C04 C05	To acquire knowledge about NMR
				000	spectroscopyCOSY,NOESY,DEPT,APT, and
					INADEQUATE technique.
	Organotransit	CHM-302	СН-512	COI	To learn Homogeneous Catalysis and catalytic
	Chemistry			CO2	Inculcate the knowledge of Compounds of Transition
	· ·				Metal-Carbon Multiple Bonds
				CO3	Demonstration Transition Metal Compounds with Bonds
					to Hydrogen, Alkyls and Aryls of Transition Metals.
				CO4	To Understand Fluxional organometallic compounds.
				CO5	Acquire knowledge about water gas shift reaction and
					Fischer–Tropsch Synthesis.
	Heterocyclic	CHM-303	СН-513	CO1	To understand Dewar resonance energy and Diamagnetic
	Chemistry			<u> </u>	susceptibility exaltations.
				02	Heterocycles and their synthesis.
				CO3	To gain knowledge about Aromatic and non Aromatic Heterocycles.
				CO4	Demonstration of Meso-ionic Heterocycles, 1,2-Azoles
				C05	and 1,5-AZOICS To learn Synthesis of pharmaceutical compounds having
					heterocyclic ring with one or more heteroatom.
	Environmental Chemister	CHM-304	CH-514	CO1	To understand Biogeochemical cycles of C,N,P,S and O.
	Chemistry			<u> </u>	Biodistribution of elements.
				CO2	Demonstration of environmental Toxicology
				C03	Chemical composition of atmosphere.
				CO5	Chemical composition of water bodies.
	Laboratory	CHM-305	СН-525	CO1	Inculcate the experimental knowledge of Colorimetric
	i				

	course				estimation of cations and anions.
	(Inorganic chemistry)			CO2	Acquire knowledge about separation techniques
	Laboratory	CHM-306	CH-526	CO1	Study of organic compounds
	course (Organic chemistry)			CO2	Extraction of organic compound from natural sources
	Laboratory	CHM-307	CH-527	CO1	Inculcate the experimental knowledge of
	course (Physical				Colorimetry, Refractometry
	chemistry)			CO2	Inculcate the experimental knowledge of Chromatography, Spectro-photometric analysis
Sem-4	Biophysical	CHM-401	CH-521	CO1	Demonstration about Biological Cell and its Constituents, Enzymes, Mechanism of Enzyme Action.
	chemistry			CO2	Acquire knowledge about Kinds of Reactions Catalysed by Enzymes,Co-Enzyme, Chemistry Biological Macromolecules.
				CO3	Elaboration about Proteins, Biological Macromolecules, The Nucleic Acids.
				CO4	Understanding the Interactions in Macromolecules, Structural Transition in Biomacromolecules.
				CO5	Inculcate Bioenergetics and ATP cycle, Cell Membranes And Transport Of Ions.
	Organic Synthesis	CHM-402	СН-522	CO1	Demonstration about Organolithium and organomagnesium compound and organometallic Reagents.
				CO2	Acquire knowledge about oxidation and reduction reactions.
				CO3	Inculcate Chemoselectivity and Felkin-Ahn Model, Diastereoselectivity, Cram's Rule.
				CO4	Elaboration of rearrangement reactions.
				CO5	Understanding Reterosynthetic Approach, Umpolung and Regeoselectivity
	Chemistry of	CHM-403	CH-523	CO1	Acquire knowledge about Terpenoids and Carotenoids.
	Natural			CO2	Demonstration about Conine, Nicotine, Atropine, Quinine and Morphine.
	Products			CO3	Elaboration of Testosterone, Estrone Progestrone, Aldosterone, Biosynthesis of Steroids
				CO4	Understanding Plant Pigments, Prostaglandins, Porphyrins.
				CO5	Inculcate Synthesis and reaction of Pyrethroids and rotenones
	Photo Chemister or 1	CHM-404	CH-524	CO1	Demonstration about Photochemical Reactions, Photochemistry of Alkenes
	Solid State			CO2	Elaboration of Photochemistry of Carbonyl compound, Photochemistry of aromatic compounds
	Chemistry			CO3	Understanding Solid state reactions, Crystal defects and non-stochiometry
				CO4	Inculcate Acquire knowledge about
				CO5	Acquire knowledge about Electronic properties and Band Theory
	Laboratory	CHM-405	CH-525	CO1	Amperometric determination of Zn+2 with EDTA, Analysis of water hardness.
	(Inorganic			CO2	Oxidation-Reduction Titrations, Precipitation Titrations

chemistry)				
Laboratory	CHM-406	CH-526	CO1	Extraction of organic compound from natural sources.
course (Organic chemistry)			CO2	To determine saponification & iodine values of oils and fats.
Laboratory	CHM-407	CH-527	CO1	Colorimetry, Spectro-photometric analysis.
course			CO2	Refractometry, Chromatography.
(Physical				
chemistry)				

Programme Outcomes

PO 1	Disciplinary Knowledge	LOCF based curriculum M.Sc. Chemistry Course helps students to develop in depth knowledge of the areas like inorganic, organic, physical chemistry. The systematic and intensive knowledge will help them to excel in application of chemistry in real life.
PO 2	Communication Skills	Chemists who engage in public communication:
		1. Increase public appreciation of and excitement for chemistryas a source of knowledge about the world.
		 Develop scientifically informed consumers (i.e., consumers will be able to use chemistry information to make decisions orsolve problems)
		3. Empower informed citizen participation in democraticprocesses.
		Encourage workforce development in the chemical sciences.
		5. A broad range of skills are covered, from writing and presentation skills, to working in
		groups and revising for exams. Frequent examples drawn from chemistry highlight the
		relevance of the skills being learned.
PO 3	Critical Thinking	Although it is imperative in chemistry for a student to have the ability to think critically
100	Cifical Finiking	critical thinking is not the only importantskill essential for overall success in chemistry. The students of Course will able to develop skills and attitudes
		needed for critical thinking which will help them in a comprehensive problem solving
		approach. They will be exposed to the pedagogy that helps them understand chemistry in
		real lifethrough class room training and case studies. It aims at buildingthe basic ability to
		think critically, evaluate dispassionately and solve complex problems creatively. The
		content is organised in such a way that the students would be able to think from diverse
		perspectives and suggest solutions according to their own sensibilities.
PO 4	Problem Solving	It involves an understanding of the language in which the problemis stated, the interpretation
		of what is given in the problem and what is sought, an understanding of the science concepts
		involved in the solution, and the ability to perform operations if these are involved in the
		problem. Requiring students to use a worksheet with each problem may help them solve them in a more affective way. The worksheet includes a place for them to place a problem
		that is list what is given and what is sought: to describe the problem situation by writing
		down other concepts they retrieve from memory (the use of a picture may integrate these): to
		of what is given in the problem and what is sought, an understanding of the science concepts involved in the solution, and the ability to perform operations if these are involved in the problem. Requiring students to use a worksheet with each problem may help them solve them in a more effective way. The worksheet includes a place for them to plan a problem, that is list what is given and what is sought; to describe the problem situation by writing down other concepts they retrieve from memory (the use of a picture may integrate these); to

		find thesolution; and to appraise
		their results.
PO 5	Analytical Reasoning	Since many Chemistry experiments require Analytical reasoning which give students the ability to look at information, be it qualitative or quantitative in nature, and discern patterns within the information. It includes, comprehending the basic structure of a set of relationships; recognizing logicallyequivalent statements; and inferring what could be true or must be true from given facts and rules. Analytical reasoning is axiomatic in that its truth is self-evident.
PO 6	Research related	Course encourages students to gain proper research skillsrequired in Chemistry.
	Skills	• Ability to find research problems.
		 Statistical Analysis will provide them research tools to identify& solve the research problems. Course will develop ability to formulate & test hypothesis & research questions so that to find answers
PO7	Team work & time	M.Sc. Chemistry practical, seminars are designed in such a mannerand are done in groups, in
	management	bound time which helps to develop team work and time management skills throughapplication of concept based practices, participative classroom discussion, problem solving task, case studies etc.
PO 8	Scientific Reasoning	Inductive reasoning involves getting a collection of specific examples and drawing a general conclusion from them. Deductive reasoning takes a general principle and then draws a specificconclusion from the general concept. Both are used in the development of scientific ideas in M.Sc. Chemistry course.
PO 9	Reflective Thinking	This course enables the students for reflective thinking andlearning capacity, which is regarded as an essential attribute in thehealth professions to link theory with application and to address the challenges that arise in clinical practice. Through reflective practice, professionals continue to critique their skills, performance, outcomes, and behavior. Reflective writing toolssuch as statements, essays, diaries, logbooks, portfolios andjournals have been used to enhance the reflective thinking process.
PO 10	Digital Literacy	The chemistry curriculum covers teaching information literacy, scientific advancement requires chemists to know and build uponwhat research has been done before. This course encourages the learners to use digital resources by adopting latest technologies to survive and excel in ever-changing global scenario. Sufficient digital literacy can be ensured through smart classrooms and webbased learning resources.
PO 11	Self-Directing Learning	This course enables the students to have self directing learning approach. The course has been formulated in such a way that these will help the learners to postulate questions, eliciting responses from various sources and finding out the most suitable solutions to relevant problems. This encourages them towards the self direction, experimentation and intrinsically motivated research work.
PO 12	Multicultural Competence	Since the students of this course come from various states and cultures, pass graduates possess knowledge of the values andbeliefs of multiple cultures and a global perspective; and capabilityto effectively engage in a multicultural society and interact respectfully with diverse groups.

PO 13	Moral & ethical Values	Course has been designed in such a manner that it inculcates moral & ethical values in the learners.
		• These values will help them not only to be successful, skilful professionals but also to be persons having responsible approachtowards environment, nation & society.
		• The course also involve training the students to check unethicalbehaviour, falsification & manipulation of information in order toavoid debacles which can be seen rising persistently over the period of time.
		• It would also help in becoming responsible citizens & facilitatecharacter building.
PO 14	Leadership readiness/ qualities	Programme pass graduates has the capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using scientific skills to guide people to the right destination, in a smooth and efficient way.
PO 15	Lifelong Learning	Programme pass graduates has the ability to acquire knowledge and skills, including 'learning how to learn, that are necessary for participating in learning activities throughout life, through self- paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge and skill development.

Programme Specific Outcomes (PSOs)

PSO 1	An ability to employ the critical thinking and efficient problem solving skills in three basic areas of chemistry (Inorganic, Organic and Physical).
PSO 2	An ability to conduct experiments; analyzing data and interpret results; while observing responsible and ethical scientific conduct.
PSO 3	Demonstrate; solve and an understanding of the major concepts of all discipline of chemistry.
PSO 4	Employ the critical thinking and scientific knowledge to design, carryout, record and analyze results of chemical reactions.
PSO 5	Create an awareness of the impact of chemistry on the environment and society.
PSO 6	Use of various chemical tools, models, equipment and software like Chemdraw .
PSO 7	Understand the good laboratory practical and safety measures.

Mapping of COs with POs of M.Sc. Chemistry

X: No Correlation b/w CO & PO. 1: Weak Correlation b/w CO & PO

2: Medium Correlation b/w CO & PO 3. Strong Correlation b/w CO & PO

Course	2	Program Outcomes														
Outcor	nes	PO	PO	РО	РО	РО	РО	PO	PO	PO	РО	PO	PO	PO	PO	PO
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CHM-	COI	2	1	3	2	х	3	х	3	х	х	2	х	х	Х	2
101	COII	2	1	х	2	2	3	х	3	х	х	2	х	х	Х	2
	COIII	2	1	2	2	3	3	1	3	2	х	1	х	х	Х	2
	COIV	2	1	2	1	2	3	2	3	2	х	х	х	х	Х	2
	COV	2	1	2	2	2	3	1	3	2	х	1	х	х	Х	3
CHM-	COI	2	1	3	1	3	3	2	3	2	х	2	х	х	Х	3
102	COII	3	1	3	2	3	3	2	3	1	х	2	х	х	х	3
	COIII	2	2	3	2	3	3	2	3	2	х	2	х	х	х	3
	COIV	2	2	1	2	3	2	2	3	2	х	2	х	х	Х	3
	COV	2	2	1	2	2	2	3	3	2	х	1	х	х	х	3
CHM-	COI	2	1	3	2	2	2	3	3	2	х	2	Х	Х	Х	3
103	COII	2	1	3	2	3	2	3	3	2	х	2	Х	Х	Х	3
	COIII	2	2	3	2	2	2	3	3	2	х	2	Х	Х	Х	3
	COIV	3	1	2	1	3	1	2	3	1	Х	2	Х	Х	Х	3
	COV	2	1	1	2	3	3	1	3	3	х	1	Х	Х	Х	3
CHM-	COI	2	Х	Х	2	1	Χ	X	3	X	Х	Х	1	1	1	3
104	COII	3	1	Х	3	2	1	1	3	X	Х	1	3	Х	1	3
	COIII	2	Χ	Χ	1	Х	Χ	Χ	3	X	Х	Х	2	1	Х	3
	COIV	3	1	2	1	Х	Χ	X	3	X	2	Х	1	1	1	3
	COV	2	1	2	1	2	Χ	1	3	3	Х	2	2	1	Х	3
CHM-	COI	2	х	2	3	1	3	1	3	3	х	1	Х	х	х	2
105	COII	2	х	2	1	1	3	2	3	2	Х	1	Х	Х	Х	2
	COIII	2	2	2	1	1	3	1	3	1	Х	1	Х	Х	Х	2
	COIV	3	1	2	1	1	3	2	3	2	Х	1	Х	Х	Х	2
	COV	3	3	2	1	х	3	1	3	2	Х	2	Х	Х	Х	2
CHM-	COI	3	1	2	3	1	2	1	3	1	Х	1	1	Х	Х	Х
106	COII	2	1	2	3	2	2	1	3	1	Х	1	1	Х	Х	Х
	COIII	3	1	2	3	2	3	1	3	1	Х	1	1	Х	Х	Х
	COIV	2	1	2	3	2	1	1	3	1	Х	1	1	Х	Х	Х
	COV	3	1	2	3	3	3	1	3	1	Х	1	1	Х	Х	Х
CHM-	COI	3	1	2	2	2	3	Х	3	Х	Х	2	Х	Х	Х	3
201	COII	3	1	2	2	1	2	Х	3	Х	Х	3	Х	Х	Х	3

	COIII	2	1	2	3	1	3	Х	3	Х	Х	2	Х	Х	Х	3
	COIV	3	1	2	2	1	3	1	3	Х	Х	3	Х	Х	Х	3
	COV	2	1	1	3	2	3	Х	3	Х	Х	2	Х	Х	Х	2
CHM-	COI	2	1	2	3	1	3	х	3	Х	Х	3	Х	Х	Х	3
202	COII	2	2	2	2	3	3	Х	3	Х	Х	2	Х	Х	Х	2
	COIII	3	1	1	3	1	2	х	3	х	Х	2	Х	Х	Х	3
	COIV	3	2	2	2	3	3	Х	3	х	Х	3	Х	Х	Х	2
	COV	2	1	2	2	1	3	х	3	х	Х	2	Х	Х	Х	2
CHM-	COI	3	2	2	2	3	2	Х	3	х	Х	3	Х	Х	Х	2
203	COII	2	2	1	3	1	2	Х	3	х	Х	1	Х	Х	Х	2
	COIII	3	2	2	3	2	2	х	3	х	Х	2	Х	Х	Х	2
	COIV	2	1	1	3	3	3	1	3	х	Х	2	Х	Х	Х	3
	COV	2	1	2	3	1	2	1	3	Х	Х	1	Х	Х	Х	2
CHM-	COI	2	2	1	2	2	2	Х	3	Х	Х	2	Х	Х	Х	2
204	COII	2	2	1	3	2	3	1	3	Х	Х	3	Х	Х	Х	3
	COIII	3	1	1	2	2	2	Х	3	Х	Х	3	Х	Х	Х	3
	COIV	2	1	2	3	3	2	Х	3	Х	Х	2	Х	Х	Х	3
	COV	3	1	1	2	3	2	1	3	х	Х	3	Х	Х	Х	3
CHM-	COI	3	1	3	1	3	3	1	3	Х	Х	3	Х	Х	Х	3
301	COII	3	1	3	2	3	3	1	3	Х	Х	2	Х	Х	Х	2
	COIII	3	1	2	2	3	3	1	3	Х	Х	3	Х	Х	Х	3
	COIV	3	1	3	2	3	3	1	3	Х	Х	2	Х	Х	Х	3
	COV	2	1	2	2	3	3	Х	3	Х	Х	3	Х	Х	Х	3
CHM-	COI	2	1	3	1	2	3	Х	3	Х	Х	2	Х	Х	Х	3
302	COII	3	1	1	1	2	3	Х	3	Х	Х	2	Х	Х	Х	3
	COIII	2	1	3	2	2	3	Х	3	х	Х	3	х	Х	Х	3
	COIV	3	1	3	2	2	3	Х	3	х	Х	2	х	Х	Х	3
	COV	2	2	3	2	2	2	Х	3	х	Х	3	х	Х	Х	2
CHM-	COI	2	1	1	1	1	2	Х	2	х	Х	2	х	Х	Х	2
303	COII	2	1	3	2	1	2	Х	3	х	Х	3	х	Х	Х	2
	COIII	3	1	3	1	1	2	Х	3	х	Х	2	х	Х	Х	3
	COIV	3	1	2	1	1	3	Х	2	х	Х	3	х	Х	Х	2
	COV	3	1	3	1	1	3	Х	2	Х	Х	3	Х	Х	Х	3
CHM-	COI	2	2	2	1	2	3	1	2	Х	Х	2	Х	Х	Х	2
304	COII	2	1	1	1	2	3	1	3	Х	Х	3	Х	Х	Х	2
	COIII	3	1	3	1	2	3	1	3	Х	Х	2	Х	Х	Х	2
	COIV	3	1	2	2	1	3	1	2	Х	Х	3	Х	Х	Х	2
	COV	3	1	1	2	2	3	1	2	х	Х	2	х	Х	Х	3
CHM-	COI	3	2	3	2	1	3	Х	2	Х	Х	3	Х	Х	Х	3
401	COII	2	1	2	2	1	2	Х	3	Х	Х	2	Х	Х	Х	3
	COIII	2	1	1	1	1	2	1	3	Х	Х	2	Х	Х	Х	3
	COIV	3	1	3	1	1	2	1	3	Х	Х	2	Х	Х	Х	3

	COV	3	1	3	1	2	2	Х	3	Х	Х	2	Х	Х	Х	2
CHM-	COI	2	1	3	2	2	2	1	3	Х	Х	3	Х	Х	Х	3
402	COII	2	1	3	2	2	2	1	3	Х	Х	3	Х	Х	Х	3
	COIII	2	1	3	1	1	3	1	3	х	Х	2	х	Х	Х	3
	COIV	3	1	2	1	1	3	1	3	х	Х	2	х	Х	Х	2
	COV	3	2	2	1	1	3	1	2	х	Х	2	х	Х	Х	2
CHM-	COI	2	1	2	1	1	3	Х	2	х	Х	2	х	Х	Х	2
403	COII	3	1	2	2	2	3	Х	2	х	Х	2	х	Х	Х	2
	COIII	3	1	3	2	1	3	Х	2	х	Х	3	х	Х	Х	2
	COIV	3	1	1	2	1	3	1	3	х	Х	2	х	Х	Х	2
	COV	3	1	1	2	1	3	1	3	Х	Х	2	Х	Х	Х	2
CHM-	COI	3	1	1	2	1	2	1	3	Х	Х	2	Х	Х	Х	2
404	COII	2	2	3	2	1	2	1	3	Х	Х	3	Х	Х	Х	2
	COIII	3	1	3	2	2	3	Х	3	Х	Х	2	Х	Х	Х	2
	COIV	2	1	3	2	2	3	Х	3	Х	Х	2	Х	Х	Х	2
	COV	3	1	2	1	2	3	Х	3	х	Х	2	х	Х	Х	2

Mapping of COs with PSO

X: No Correlation b/w CO & PSO. 1: Weak Correlation b/w CO & PSO

2: Medium Correlation b/w CO & PSO 3. Strong Correlation b/w CO & PSO

Course									
Outcomes		Programme Specific Outcomes							
		PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	
CHM-	COI	3	3	3	3	1	1	3	
101	COII	2	3	3	3	2	2	3	
	COIII	2	3	2	3	1	2	3	
	COIV	2	3	2	3	1	1	3	
	COV	2	3	1	3	1	1	3	
CHM-	COI	2	2	1	3	1	2	2	
102	COII	3	3	2	3	2	2	2	
	COIII	3	2	1	3	2	2	3	
	COIV	2	3	2	2	2	1	3	
	COV	3	2	1	2	1	1	3	
CHM-	COI	3	2	2	3	1	2	3	
103	COII	3	2	3	2	1	1	2	
	COIII	2	2	2	2	1	2	2	
	COIV	3	3	1	2	2	1	2	
	COV	3	3	2	2	2	2	3	
CHM-	COI	2	2	3	3	2	1	3	
104	COII	2	2	2	3	2	2	3	
	COIII	2	2	2	3	1	1	3	
	COIV	2	2	2	2	1	2	3	
	COV	2	3	1	2	1	2	3	
CHM-	COI	2	3	1	2	1	2	3	
105	COII	2	3	3	2	1	1	2	
	COIII	2	3	2	2	2	1	2	
	COIV	3	3	2	2	2	1	2	
	COV	3	2	3	3	2	2	2	
CHM-	COI	3	2	3	3	2	1	2	
106	COII	3	2	3	3	2	2	3	
	COIII	3	2	2	2	1	1	3	
	COIV	2	3	2	2	1	1	3	
	COV	2	3	1	2	1	1	3	
CHM-	COI	2	3	1	2	1	1	3	
201	COII	2	3	1	3	2	2	3	
	COIII	2	2	3	3	2	2	2	

	COIV	2	2	3	3	2	2	2
	COV	3	2	3	3	2	2	2
CHM-	COI	3	2	1	3	1	1	3
202	COII	3	2	2	2	1	1	3
	COIII	3	3	2	2	1	1	3
	COIV	3	3	3	2	1	2	3
	COV	3	3	3	2	2	2	3
CHM-	COI	3	3	3	2	2	2	3
203	COII	3	3	2	2	2	1	3
	COIII	2	2	2	3	2	1	3
	COIV	2	2	1	3	2	2	3
	COV	2	2	1	3	1	1	2
CHM-	COI	2	2	2	3	2	2	2
204	COII	3	2	2	3	1	1	2
	COIII	3	2	2	2	2	2	2
	COIV	2	3	1	2	1	1	2
	COV	2	3	1	2	2	1	2
CHM-	COI	3	2	1	3	2	1	2
301	COII	3	3	2	2	2	1	2
	COIII	3	2	2	3	2	2	3
	COIV	3	3	2	2	2	1	3
	COV	3	2	3	3	1	1	3
CHM-	COI	3	3	3	2	1	2	3
302	COII	3	2	2	3	1	1	2
	COIII	2	3	1	2	1	1	2
	COIV	2	2	2	2	2	1	3
	COV	3	2	3	2	1	2	3
CHM-	COI	2	2	2	2	1	2	3
303	COII	2	2	2	3	2	2	2
	COIII	2	3	3	3	1	2	2
	COIV	2	3	2	3	2	2	2
	COV	3	3	1	3	1	1	3
CHM-	COI	2	3	1	2	3	1	3
304	COII	3	2	3	2	3	1	2
	COIII	2	2	3	2	3	1	2
	COIV	2	2	2	2	3	2	2
	COV	2	2	2	3	3	2	2
CHM-	COI	2	3	3	3	1	2	3
401	COII	2	2	2	3	2	1	3
	COIII	2	2	3	3	1	1	3
	COIV	2	3	2	3	2	1	2
	COV	2	2	3	2	2	2	2

CHM-	COI	2	2	2	2	1	2	2
402	COII	2	3	2	2	1	1	2
	COIII	3	3	1	2	2	1	3
	COIV	3	3	1	2	1	1	3
	COV	3	3	2	3	1	1	3
CHM-	COI	3	3	3	3	1	2	3
403	COII	3	2	2	3	1	2	2
	COIII	3	2	1	3	2	2	2
	COIV	3	2	1	3	2	2	2
	COV	3	3	2	2	2	2	3
CHM-	COI	3	2	1	2	1	1	3
404	COII	3	2	2	2	1	1	3
	COIII	3	2	2	2	2	1	3
	COIV	3	3	2	2	1	2	2
	COV	3	3	1	3	2	2	2